Решить, не успеваю ничего, а завтра сдать уже надо( только без крокозябр, а то я предыдущее решение нифига не поняла( 2cos^2x-3cosx+1=0 sin3x+\sqrt3 cos3x=0 2tgx-ctgx+1=0 6cos^2x+7sinx-8=0 sinxcosx-cos^2x=0 3tg^22x-2ctg(п/2+2x)-1=0
|х+14| - 7* |1 - х| > х или что тоже самое |х+14| - 7* |x -1| > х разобьем на три интервала 1) х+14<0 и x-1<0 x<-14 и x<1 объединяя оба эти условия получим x<-14 на этом интервале наше неравенство имеет вид -(х+14) + 7* (x -1) > х -x-14+7x-7>x 6x-21>x 5x>21 x>21/5 но это противоречит условию x<-14. На этом интервале решения нет. 2) х+14≥0 и x-1<0 x≥-14 и x<1 объединяя оба эти условия получим -14≤x<1 на этом интервале наше неравенство имеет вид (х+14) + 7* (x -1) > х x+14+7x-7>x 8x+7>x 7x>-7 x>-1 объединяя это условие с -14≤x<1 получим -1 <x<1
3) х+14≥0 и x-1≥0 x≥-14 и x≥1 объединяя оба эти условия получим x≥1 на этом интервале наше неравенство имеет вид (х+14) - 7* (x -1) > х x+14-7x+7>x -6x+21>x 21>7x 3>x объединяя это условие с x≥1 получим 1≤x<3 теперь последнее действие: объединим решения 2) и 3) -1 <x<3 или x∈(-1;3)
6cos^2x+7sinx-8=0
6(1-sin^2x)+7sinx-8=0
6-6sin^2x+7sinx-8=0
6sin^2x-7sinx+2=0 замена переменной sinx =t ; -1=< t =<1
6t^2-7t+2=0
D =49-48=1
t1 =1/2 ; sinx =t1 =1/2= sin(2pi*n+pi/6)=sin(2pi*n+5pi/6), n ϵ Z
t2=2/3 ; sinx =t2 =2/3= sin(2pi*n+pi-1/sin(2/3))=sin(2pi*n+1/sin(2/3), n ϵ Z
ОТВЕТ
х=(2pi*n+pi/6), n ϵ Z
х=(2pi*n+5pi/6), n ϵ Z
х=(2pi*n+pi-1/sin(2/3)), n ϵ Z
х=(2pi*n+1/sin(2/3), n ϵ Z