Если f (строго) возрастает на отрезке [a, b], то для любых x<y из отрезка [a, b] верно, что f(x)<f(y), в частности для любых x из отрезка [a, b] выполняется f(x)<f(b). Аналогично, если f (строго) убывает на отрезке [b, c], то для любых x>y из отрезка [a, b] верно, что f(y)>f(x), в частности для любых x из отрезка [b, c] выполняется f(b)>f(x). f(b) - наибольшее значение на отрезках [a, b] и [b, c], тогда оно наибольшее значение и на объединении отрезков.
Для минимума: если функция f убывает на отрезке [b ; c] возрастает, а на отрезке [a; b] убывает, то в точке b функция имеет минимум, причем f(b) -наименьшее значение f на отрезке [a; c]. Доказательство: Если f (строго) возрастает на отрезке [b, c], то для любых x<y из отрезка [b, c] верно, что f(y)<f(x), в частности для любых x из отрезка [a, b] выполняется f(b)<f(x). Аналогично, если f (строго) убывает на отрезке [a, b], то для любых x>y из отрезка [a, b] верно, что f (x)>f(y), в частности для любых x из отрезка [a, b] выполняется f(b)<f(x). f(b) - наименьшее значение на отрезках [a, b] и [b, c], тогда оно наименьшее значение и на объединении отрезков.
Объяснение:
|x -1| + |x +3| ≤ 4
Решим это неравенство методом интервалов.
Найдем нули подмодульных выражений:
х - 1 =0 → х = 1
х + 3 = 0 → х = - 3
Эти значения разбивают числовую ось на три интервала:
х ∈ (-∞; - 3] ; (-3; 1]; (1; + ∞)
Решим заданное неравенство на каждом из этих промежутков.
1) 1) x∈ (-∞; - 3], при этом неравенство примет вид:
- (х - 1) - (х + 3) ≤ 4
-х + 1 - х - 3 ≤ 4
-2х ≤ 6
х ≥ - 3
Пересекая найденное решение x∈ [- 3; +∞) c рассматриваемым интервалом x∈ (-∞; - 3] , получаем решение x = - 3
2) х ∈ (-3; 1]
- (х - 1) + х + 3 ≤ 4
0*х ≤ 4 → х - любое число. Учитывая интервал, х х ∈ (-3; 1]
3) х ∈ (1; + ∞)
х - 1 + х + 3 ≤ 4
2х ≤ 2
х ≤ 1 → х ∈ (- ∞; 1]
Для получения окончательного ответа объединим полученные решения:
x ∈ [- 3] ∪ (-3; 1] ∪ (- ∞; 1]
ответ: х ∈ [-3; 1]