Объяснение:
1.
C⁵ₓ₊₁=(3/8)*A³ₓ
(x+1)!/((x+1-5)!*5!)=(3/8)*x!/(x-3)!
(x+1)!/((x-4)!*5!)=(3/8)*x!/((x-4)!(x-3))
x!*(x+1)/5!=(3/8)*x!/(x-3)
(x+1)/5!=(3/8)/(x-3)
(x-3)*(x+1)=(3/8)*120
x²-2x-3=45
x₂-2x-48=0 D=196 √D=14
x₁=-6 ∉ x₂=8.
ответ: х=8.
2.
Cˣ⁻⁴ₓ₊₁=(7/15)*A³ₓ₊₁
(x+1)!/((x+1-(x-4))!*(x-4)!=(7/15)*(x+1)!/(x+1-3)!
(x+1)!/(5!*(x-4)!=(7/15)*(x+1)!/(x-2)!
1/(5!*(x-4)!)=(7/15)/((x-4)!*(x-3)*(x-2))
1/5!=(7/15)/((x-3)*(x-2))
15*(x-3)*(x-2)=7*5!
15*(x²-5x+6)=7*120 |÷15
x²-5x+6=7*8
x²-5x+6=56
x²-5x-50=0 D=225 √D=15
x₁=-5 ∉ x₂=10.
ответ: х=10.
Общая формула прямой: y=kx+b, где k - угол наклона к оси Ох, а b - смещение по у.
Найдем сначала k: k = тангенсу угла, образованного прямой и осью Ох. Образуем прямоуг. треугольник (как угодно), чтобы найти тангенс. Самый простой - "верхняя часть" показанной функции. Тангенс = 4 (катет = 4 поделить на катет = 1)
Если без тангенса, то можно вычислить логически: за ∆х = 1, ∆у = 4, k - это "скорость" возрастания функции, следует k = 4.
b найти еще проще, смещение по у = -4, следует b = -4.
Иначе, чтобы найти b, нужно чтобы формула приняла вид y = b, такое возможно при х =0. Находим на графике координаты у при х = 0, у = -4, следует b = -4.
Подставляем в формулу:
y = 4x - 4