Примем
S=12, км - путь туристов туда и обратно;
V1, км/час - скорость лодки (скорость в стоячей воде);
V2=3 км/час - скорость течения
тогда
S/(V1+V2)+S/(V1-V2)=3
12/(V1+3)+12/(V1-3)=3
[12*(V1-3)+12*(V1+3)]-3*(V1+3)*(V1-3)=0
12*V1-36+12*V1+36-3*(V1^2-3*V1+3*V1-9)=0
12*V1+12*V1-3*V1^2+27=0
-3*V1^2+24*V1+27=0
Решаем при дискриминанта (см. ссылку)
V1(1)=9
V1(2)=-1
скорость не может быть отрицательная
тогда
скорость лодки в стоячей воде = 9 км/час
проверим
12/(9+3)+12/(9-3)=3
12/12+12/6=3
1+2=3
3=3
Решение верно.
а) Рассмотрим уравнение (a=0 подходит тогда х=1)сделаем замену переменных
. Получим уравнение
(здесь
)Данное квадратное уравнение имеет 1 корень, если дискриминант D=0. Однако, если уравнение имеет 2 решения, причем разного знака, то нам подходит только одно положительное. Следовательно, в этом случае исходное уравнение будет иметь тоже 1 корень. Поэтому рассматриваем случай, когда
Тогда
Далее пусть меньший корень будет < 0, а больший >0.
Необходимо рассмотреть 3 случая:
1)
Тогда D>1, следовательно a<0. Получаем нет решений.
2)
Тогда
всегда выполняется.
Тогда D>1, следовательно a<0.
3)
Таким образом и
б) неравенство будет иметь хотя бы один решение, если
. Отсюда получаем a из
ответ: 18; степень 17
Объяснение:
3x³y⁵6k⁸p=18x³y⁵k⁸p - коэффициент 18 степень равна 17. (3+5+8+1=17)