Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
а затем и 2,5а - 7 < 2,5b - 7.
ответ: 2,5а - 7 < 2,5b - 7.
420/(x-20)-420/x=2 2/5
Домножаем обе части уравнения на общий знаменатель х*(х-20)*5:
2100*х-2100*(х-20)=12*х*(х-20)
Умножаем обе части уравнения на 1/12 (для упрощения вычислений! ) и открываем скобки:
175*х-175*х+3500=x^2-20*x
Приводим подобные и переносим все части уравнения влево, после чего умножаем обе части уравнения на -1. Получаем квадратное уравнение:
x^2-20*x-3500=0
Решаем приведенное квадратное уравнение вида x^2+px+q=0:
x1,2=10+/-sqrt(100+3500)=10+/-60
x1=70 (км/ч)
х2=-50 посторонний корень, не имеющий физического смысла, скорость автомобиля не может быть в данном случае ОТРИЦАТЕЛЬНОЙ.
Проверка: Первый автомобиль проедет расстояние за 420/70=6 часов, второй за 420/(70-20)=8 2/5 часа. Первый автомобиль приедет на 8 2/5-6=2 2/5 часа=2 часа 24 минуты раньше второго, что совпадает с условием задачи.
ответ: Скорость первого автомобиля 70 километров в час.