М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Jfddddghvvvvgu
Jfddddghvvvvgu
18.06.2020 22:40 •  Алгебра

Существует ли простое число если вида 81а^4+64, где а-целое число?

👇
Ответ:
миснайс
миснайс
18.06.2020

НЕТ

Объяснение:

81a⁴ + 64 =  (9a²)² + 8² = (9a²)²+ 144a² + 8² - 144a² = (9a²+8)² - (12a)² = (9a²+12a+8)(9a²-12a+8)

простое делится либо на себя либо на 1, значит из двух множителей один должен быть равен 1, а второй быть простым числом

9a²±12a+8 = 1

9a²+12a+7 = 0

D = 144-252<0, нет решений

Значит НЕТ такого числа

4,5(4 оценок)
Открыть все ответы
Ответ:
Dgj8
Dgj8
18.06.2020
Log₂(x²-7x+6)≥1+log₂7 log₂(x²-7x+6)≥log₂2+log₂7 log₂(x²-7x+6)≥log₂(2*7) log₂(x²-7x+6)≥log₂14 одз: x²-7x+6> 0 d=(-7)²-4*6=49-24=25 x=(7-5)/2=1    x=(7+5)/2=6               +                          -                        + x∈(-∞; 1)∪(6; +∞) x²-7x+6≥14 x²-7x+6-14≥0 x²-7x-8≥0 d=(-7)²-4*(-8)=49+32=81 x=(7-9)/2=-1    x=(7+9)/2=8             +                            -                          + x∈(-∞; -1]∪[8; +∞) найденные интервалы входят в область допустимых значений. ответ: x∈(-∞; -1]∪[8; +∞)
4,6(46 оценок)
Ответ:
VikaGrin1
VikaGrin1
18.06.2020
ОДЗ :    х² - 5х - 23 ≥ 0
             2х² - 10х - 32 ≥ 0
Решение системы двух неравенств не так  просто, поэтому при нахождении корней достаточно сделать проверку.
Подставить корни в систему неравенств или подставить корни в уравнение

Так как
2х²-10х-32=2(х²-5х-16)
то применяем метод  замены переменной

х²-5х-23=t    ⇒   x²-5x=t+23
x²-5x-16=t+23-16=t+7

Уравнение примет вид
√t + √2·(t+7)=5

или

√2·(t+7) = 5 - √t

Возводим обе части уравнения в квадрат
При этом правая часть должна быть положительной или равной 0
(  (5 - √t)≥0    ⇒√ t ≤ 5    ⇒  t ≤  25)

2·( t + 7) = 25 - 10 √t + t

или

10·√t = 25 + t - 2t - 14

10·√t = 11 - t

Еще раз возводим в квадрат, при условии, что 11 - t ≥ 0    t ≤ 11
Получаем уравнение

100 t = 121 - 22 t + t², при этом    t ≤ 11

t² - 122 t + 121 = 0

D=122²-4·121=14884 - 484 = 14400=120

t₁=(122-120)/2= 1     или    t₂= (122+120)/2 = 121  не удовлетворяет                                                          условию ( t ≤ 11)

возвращаемся к переменной х:

х² - 5х - 23 = 1         

х² - 5х - 24 = 0         
D=25+96=121=11²             
x₁=(5-11)/2=-3                      
х₂=(5+11)/2=8                      

Проверка
х = - 3         √(9 +15 - 23) + √2·(9 +15 - 16) = 5 - верно    1+4=5

х = 8            √(64 - 40 - 23) + √2·(64-40 -16) = 5 - верно    1+4=5

ответ. х₁=-3    х₂=8

Объясните, как решать подобные уравнения. желательно так подробно, насколько это возможно. буду приз
4,7(50 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ