Это условие вытекает из двух условий. 1 условие : рассматриваем случай, когда правая часть неотрицательна (положительна или ноль), ведь левая часть, неотрицательный корень, может быть больше как положительного числа, так и нуля: . 2.Подкоренное выражение неотрицательно . Так как неравенства должны выполняться одновременно, то пересечение этих неравенств даст: .
Первую систему иногда пишут в виде . Но фактически лишнее неравенство, оно выполняется автоматически потому, что , ибо полный квадрат всегда неотрицателен.
Это условие вытекает из двух условий. 1 условие : рассматриваем случай, когда правая часть неотрицательна (положительна или ноль), ведь левая часть, неотрицательный корень, может быть больше как положительного числа, так и нуля: . 2.Подкоренное выражение неотрицательно . Так как неравенства должны выполняться одновременно, то пересечение этих неравенств даст: .
Первую систему иногда пишут в виде . Но фактически лишнее неравенство, оно выполняется автоматически потому, что , ибо полный квадрат всегда неотрицателен.
По признаку Коши исследуем. Не забыть писать не х, а |x|/
lim√(4n+1/n+7)^n *|x|^n =lim (4n+1/n+7)*|x|=4*|x| (корень только не квадратный, а n-ой степени)
4*|x|<1
-1/4<x<1/4