Представьте в виде меогочлена:
1. (х-3)(х^2+2х-6) = х(х^2+2х-6)-3(х^2+2х-6) = х^3+2х^2-6х-3х^2-6х+18 = х^3-х^2-12х+18
2. (у+5)(у^2-3у+8) = у(у^2-3у+8)+5(у^2-3у+8) = у^3-3у^2+8у+5у^2-15у+40 = у^3+2у^2-7у+40
3. (b-2)(b^2-3b-8) = (b-2)(3b^3-18) = 3b^4-18b-6b^3+36 = 3b^4-6b^3-18b+36
4. (а+4)(a^2-6a+2) = a(a^2-6a+2)+4(a^2-6s+2) = a^3-6a^2+2a+4a^2-24a+8 = a^3-2a^2!22a+8
5. (6p-q)(3p+5q) = 6p(3p+5q)-q(3p+5q) = 18p^2+30pq-3pq-5q^2 = 18p^2+27pq-5q^2
Докажите тождество:
1. a(a-2)-8=(a+2)(a-4)
a^2-2a-8=a^2-4a+2a-8
-2a=-4a+2a
-2a=-2a
ответ: утверждение верно.
2. b(b-3)-18=(b+3)(b-6)
b^2-3b-18=b^2-6b+3b-18
-3b=-6b+3b
-3b=-3b
ответ: утверждение верно.
y=-2(x-1)^2
y=-2(x^2-2x+1)
y=-2x^2+4x-2
f(x)=-2x^2+4x-2
График - парабола, ветви вниз, т.к. коэффициент при x^2 отрицательный,
a=-2.
Точка вершины параболы (1;0): x=-b/2a=-4/2*-2=-4/-4=1;
y=-2*1+4*1-2=-4+4=0
Пересечение с осью У, при х=0: -2*0+4*0-2=-2 - точка пересечения (0;-2).
Точки пересечения с осью Х, при y=0:
-2x^2+4x-2=0 |2
-x^2+2x-1=0
D=2^2-4*(-1)*(-1)=0 Уравнение имеет один корень
х=(-2+0)/-2=1
График пересекается с осью Х в точке (1;0), т.е. вершина параболы лежит на оси 0Х.
График во вложении
ответ: 2 то есть 2 что равняется двум