(a + b)² = a² + 2ab + b²
(a - b)² = a² - 2ab + b²
учите формулы сокращенного умножения
===
x² + 2xy + y² = (x + y)²
4x² + 4x + 1 = (2x)² + 2*1*2x + 1² = (2x + 1)²
36 - 12a + a² = (6 - a)²
1 - 2a + a² = (1 - a)²
1/4 + x² - x = (1/2 - x)²
4x² + 12x + 9 = (2x)² + 2*3*2x + 3² = (2x + 3)²
1 + y² - 2y = (1 - y)²
28xy + 49x² + 4y² = (7x + 2y)²
m⁴ + 2m²n³ + n⁶ = (m²)² + 2*m²*n³ + (n³)² = (m² + n³)²
1 - 6c² + 9c⁴ = (1 - 3c²)²
-28 a + 4a² + 49 = -2*2a*7 + (2a)² + 7² = (2a + 7)
4x⁴ - 12x²y + 9y⁴ = (2x² - 3y²)²
4a⁴ - 12a² + 9 = (2a² - 3)²
1/64x² + xy² + 16y¹⁴ нет квадрата
1/64x² + xy² + 16y⁴ = (1/8x)² + 2*4y²*1/8x + (4y²)² = (1/8x + 4y²)²
0.04x² - 0.1xm³ + 1/16m⁶ = (0.2x - 1/4m³)²
1) f'(x)=6x^2-6x-12;
f'(x)=0 <=> 6x^2-6x-12=0 |:6
x^2-x-2=0
x1=2 - не входит в промежуток в условии
x2=-1
f(-2)=-16-12+24+24=20
f(1)=2-3+12+24=35
f(-1)=-2-3+12+24=31;
ответ: minf(x)=f(-2)=20; maxf(x)=f(1)=35;
2) f'(x) = -sin2x*2+sinx*2
f'(x)=0 <=> 2sinx-2sin2x=0 |:2
sinx-sin2x=0; sinx-2sinxcosx=0; sinx(1-2cosx)=0; sinx=0 или cosx=-1/2;
x=pi * n, n принадлежит Z или x=+-2pi/3+2pi*k, k принадлежит Z;
f(-pi/3)=cos(-2pi/3) - 2cos(pi/3)=-1/2-2*1/2=-1/2-1=-3/2
f(pi)=cosx(2pi) - 2cos(pi)=1+2=3;
f(2pi/3)=cos(4pi/3)-2(2pi/3)=-1/2+2*1/2=-1/2+1=1/2;
ответ: minf(x)=f(-pi/3)=-3/2; maxf(x)=f(pi)=3;
9х²-6х-8=((3х)²-2*3х*1+1²)-9=(3х-1)²-9=(3х-1-3)(3х-1+3)=(3х-4)(3х+2)