1. 32
2. 3
3. x1= -4 x2=-2
4 А-2 B-1 C-3
5 x равно-больше 2,9 или 29/10
6.Возьмём за x - скорость по шоссе. Тогда время его ходьбы по шоссе равен 5/x. Так скорость по лесу на 3 км меньше, то можно записать её как x-3. Тогда время ходьбы по лесу равен 6/(x-3). Всего они шли 240 минут. Получим уравнение:
5/x + 6/(x-3)=240
Приведём к общему знаменателю.
5(x-3) + 6x = 4(x^2 - 3x)
5x - 15 + 6x =4x^2 - 12x
11x - 15 =4x^2 - 12x
4x^2 - 23x + 15=0
D= (-23)^2 - 4 * 4 * 15 = 529 -240=289
x1= (23 + 17)/2*4=5 - подходит
x2= (23-17)/2*4 = 0.75 - не подходит
След-но, скорость пешехода по шоссе - 5км/ч, а по лесу - 2км/ч
Объяснение:
Решение системы уравнений (-1; 2)
Объяснение:
Решить систему уравнений:
(2х+7у)/4 + (3х-2у)/3 = 2/3
(3х+2у)/2 - (4х-6у)/7 = 39/14
Умножить первое уравнение на 12, второе на 14, чтобы избавиться от дроби:
3(2х+7у) + 4(3х-2у) = 4*2
7(3х+2у) - 2(4х-6у) = 39
Раскрыть скобки:
6х+21у+12х-8у=8
21х+14у-8х+12у=39
Привести подобные члены:
18х+13у=8
13х+26у=39
Умножить первое уравнение на -2, чтобы решить систему методом сложения.
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
-36х-26у= -16
13х+26у=39
Складываем уравнения:
-36х+13х-26у+26у= -16+39
-23х=23
х=23/-23
х= -1
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
13х+26у=39
26у=39-13х
26у=39-13*(-1)
26у=39+13
26у=52
у=52/26
у=2
Решение системы уравнений (-1; 2)
ответ:в файле
Объяснение: