Парабола: y = ах^2 + bx + c
1)
A: 16a - 4b + c = 0
B: 4a + 2b + c = 0
C: 0a + 0b + c = -3
<=>
c = -3
16a - 4b = 3
4a + 2b = 3 (* 2) и сложим
<=>
c = -3
4a - 2b = 3
24a = 9
<=>
c = -3
a = 3/8
b = 2a - 3/2 = -3/4
=> Уравнение: y = 3/8 x^2 - 3/4 x - 3
2) (Другой
Используем Th Виета
x1 + x2 = -b/a
x1 * x2 = c/a
что означает, что a x^2 + bx + c = 0 ?
это значит, что х - корень
т.к. в Точках A и B y = 0 => корни: 1 и 6
=> 7 = -b/a
6 = c/a
Посмотрим на 3-ю точку
a * 0 + b * 0 + c= -4
=> c = -4
=> 7 = -b / a
6 = -4/a
=> a = -2/3
b = 21/2
=> Уравнение: y = -2/3x^2 + 21/2x - 4
Здесь Все под один знак равно:
y = x^2 + 4x - 2
Тогда графиком данной функции будет являться парабола!
Приравниваем к 0 правую часть функции:
x^2 + 4x - 2 = 0
Находим 2 точки параболы: m и n
m = -b дробная черта 2a. ; -4 дроб. черта 2 = -2
n = 4 -8 -2 = -6
Получились 2 точки: A (-2;0) и B (-6;0);
Далее находим центральную точку нашей параболы путем нахождения дискриминанта:
D = (b/2)^2 - ac. ("/"-дробная черта)
D = 4 - 1 (-2)
D = 6
Это примернооо 2,4 квадратный корень.
x1/2 = -b/2 +- корень из D и все разделить на a.
x1/2 = -2 +- 2,4 /// 1 = / x1 = 0,4; x2 = -4.4
Дальше надо начертить систему координат, и расставить эти точки:
A (-2;0); B (-6;0); C (-4,4; 0,4);
Получится парабола!