Объяснение:
При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя. (Проще говоря, вычитаются).
1)0,6¹³:0,6¹¹=0,6¹³⁻¹¹=0,6²=0,6*0,6=0,36
2)(-5 и 3/7)²²: (-5 и 3/7)²¹=(-5 и 3/7)²²⁻²¹=(-5 и 3/7)¹= -5 и 3/7
3)(-1,21)²⁴: (-1,21)²³=(-1,21)²⁴⁻²³=(-1,21)¹= -1,21
4)(pg)¹⁸: (pg)⁸: (pg)³=(pg)⁷
а)(pg)¹⁸: (pg)⁸=(pg)¹⁸⁻⁸= (pg)¹⁰
б)(pg)¹⁰: (pg)³=(pg)¹⁰⁻³= (pg)⁷
f(x)=x²-3x+2
Найдём нули функции:
х²-3х+2=0
х²-х-2х+2=0
х(х-1)-2(х-1)=0
(х-2)(х-1)=0
х-2=0 => x=2
x-1=0 => x=1
Точки пересечения параболы с осью Х: (1;0) и (2;0)
Найдем вершину параболы по формуле x=-b/2a: a=1; b=-3: x=3/2*1=1.5
y=1.5²-3*1.5+2
y=-0.25
Координаты вершины параболы: (1.5;-0.25)
Все. Параболу можно построить по этим 3-м точкам: (1;0), (1.5;-0.25) и (2;0).
Чтобы график был точнее, можно найти еще несколько точек, подставляя различные значения х в уравнение параболы.
Таблица и график во вложении
Пусть второй рабочий изготовил х деталей. Первый рабочий изготовил на 16% больше. Чтобы найти 16% от числа х, надо 16% перевести в десятичную дробь 0,16, а чтобы найти дробь от числах, надо это число х умножить на дробь 0,16. Значит, первый рабочий изготовил (х + 0,16х) деталей. Вместе оба рабочих изготовили (х + (х + 0,16х)) деталей или 86 деталей. Составим уравнение и решим его.
x + (x + 0,16x) = 86;
x + x + 0,16x = 86;
2,16x = 86;
x = 86 : 2,16;
x = 39,8=40 (деталей) – второй рабочий;
x + 0,16x = 1,16x = 40 * 1,16 = 46 (деталей) – первый рабочий.
ответ. 40 деталей; 46 деталей.