Ты, видимо, пропустила двойку. сначала найдем количество удовлетворяющих условию исходов. на 1 месте может стоять 1,2,3 или 4, это не столь важно(5 не может, позже поймешь). то есть 4 варианта. на 2 месте числа может стоять любая цифра, кроме 5 и той, что уже использовали, значит, 3 варианта. т.к. цифры не должны повторяться, то 5 мы ставим в конец, чтобы число делилось на 5. тогда тут только 1 вариант. найдем количество исходов умножением. 4*3*1=12. теперь найдем количество всех возможных. такой же логикой: 5*4*3=60. тогда вероятность p=12/60 = 1/5 = 0,2
Прежде всего отметим, что число матчей, сыгранных с другими командами увеличивается от 0 до 19 и точно не больше 19.
Если предположить, что есть момент, когда все команды сыграли разное число матчей, то это возможно при единственном раскладе
1) есть только одна команда, которая не играла (0) 2) есть только одна команда, которая сыграла ровно одну игру (1) 3) есть только одна команда, которая сыграла ровно две игры (2) . . . 20) есть только одна команда, которая сыграла ровно 19 игр (19)
Только так реализуются 20 различных чисел от 0 до 19. Получаем противоречие - последняя команда сыграла со всеми, но первая почему-то не играла ни с кем.
Значит предположение неверно, и поэтому в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое количество матчей
x^4- 2x^3+2x-1=(x^4-1)- (2x^3-2x)=(x^2+1)(x^2-1)-2x(x^2-1)=(x^2-1)(x^2+1-2x)=(x^2-1)(x-1)^2=(x-1)(x+1)(x-1)(x-1)