М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
данич36
данич36
04.03.2023 12:54 •  Алгебра

Розв’яжіть рівняння:
4у^3 – у^2 = 4у – 1

👇
Ответ:

y_1=\frac{1}{4}     y_2=-1\\     y_3=1

Объяснение:

4y^3-y^2=4y-1\\\\y^2(4y-1)=4y-1\\\\y^2(4y-1)-(4y-1)=0\\\\(4y-1)(y^2-1)=0\\\\4y-1=0\\y^2-1=0\\\\y_1=\frac{1}{4} \\y_2=-1\\y_3=1

4,4(42 оценок)
Открыть все ответы
Ответ:
Nasti12
Nasti12
04.03.2023

Запишем матрицу в виде:

1 2 -2

-2 -1 1

1 -2 1

Главный определитель

∆=1*((-1)*1 - (-2)*1) - (-2)*(2*1 - (-2)*(-2)) + 1*(2*1 - (-1)*(-2)) = -3

Определитель отличен от нуля, следовательно, матрица является невырожденной и для нее можно найти обратную матрицу A-1.

Обратная матрица будет иметь следующий вид:

 

A11       A21     A31

A12    A22 A32

A13    A23 A33

где Aij - алгебраические дополнения.

Транспонированная матрица.

AT=  

1       -2       1

2      -1       -2

-2     1        1

Найдем алгебраические дополнения матрицы AT.

A1,1 = (-1)1+1  

-1       -2

1        1

∆1,1 = ((-1)*1 - 1*(-2)) = 1

A1,2 = (-1)1+2  

2       -2

-2       1

∆1,2 = -(2*1 - (-2)*(-2)) = 2

A1,3 = (-1)1+3  

2       -1

-2       1

∆1,3 = (2*1 - (-2)*(-1)) = 0

A2,1 = (-1)2+1  

-2      1

1        1

∆2,1 = -((-2)*1 - 1*1) = 3

A2,2 = (-1)2+2  

1       1

-2     1

∆2,2 = (1*1 - (-2)*1) = 3

A2,3 = (-1)2+3  

1      -2

-2      1

∆2,3 = -(1*1 - (-2)*(-2)) = 3

A3,1 = (-1)3+1  

-2       1

-1      -2

∆3,1 = ((-2)*(-2) - (-1)*1) = 5

A3,2 = (-1)3+2  

1        1

2      -2

∆3,2 = -(1*(-2) - 2*1) = 4

A3,3 = (-1)3+3  

1       -2

2      -1

∆3,3 = (1*(-1) - 2*(-2)) = 3

Обратная матрица:  

           1       2     0

=1/-3   3      3      3

          5      4      3

A-1=  

-1/3      -2/3      0

-1            -1       -1

-5/3     -4/3       -1.

Проверим правильность нахождения обратной матрицы путем умножения исходной матрицы на обратную. Должны получить единичную матрицу E.

E=A*A-1=  

1       2     -2

-2     -1      1

1      -2       1

 

          1       2      0

1/-3    3      3      3

         5      4      3

E=A*A-1=

1*1+2*3+(-2)*5 1*2+2*3+(-2)*4 1*0+2*3+(-2)*3

(-2)*1+(-1)*3+1*5 (-2)*2+(-1)*3+1*4 (-2)*0+(-1)*3+1*3

1*1+(-2)*3+1*5 1*2+(-2)*3+1*4 1*0+(-2)*3+1*3 =

 

                -3       0     0

 = 1/-3      0      -3        0

                0       0      -3

A*A-1=  

1        0      0

0       1       0

0       0       1.

Решение верно.


Найти обратную матрицу
4,4(14 оценок)
Ответ:
iskandarova174
iskandarova174
04.03.2023

Ну тут всё очень просто.

Пусть х см - длина стороны BC, тогда AB (x+3) см,а площадь прямоугольника равна 28 см². Т.к. это прямоугольник, то AB=CD, BC=AD (по свойству).

Составим и решим уравнение.

S=ab (то есть произведения двух его смежных сторон)

Для нашего случая : S=x(x+3)

x(x+3)=28

x²+3x-28=0

По теореме Виета корни здесь будут -7 и 4.

-7 мы сразу можем не принимать, т.к. длина стороны это всегда положительное число.

Если x=4, то стороны BC и AD равны по 4 см.

4+3=7 см - стороны AB и BC.

ответ. 4 см и 7 см.

4,4(59 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ