Задание 1.
1) 15ab+10bc= 5b(3a+2c).
2)3x²+6xy+3y²= 3(x²+2xy+y²)= 3(x+y)².
3)6x(x-1)-(1-x)= 6x(x-1)+(x-1)= (x-1)(6x+1).
4)3a³+3= 3(a³+1)= 3(a+1)(a²-a+1).
5) 2a-2b+a²-b²= 2(a-b)+(a-b)(a+b)= (a-b)(2+a+b).
6)-3x(x+3)+x³+27= -3x(x+3)+(x+3)(x²-3х+9)= (х+3)(-3х+х²-3х+9)= (х+3)(х²-6х+9)=(х+3)(х-3)².
Задание 2.
(43²-17²):(43²-2•43•17+17²)= ((43-17)(43+17)) ÷ (43-17)²= 26•60÷26²= 60÷26=30/13= 2 4/13 (две целых четыре тринадцатых).
P.S. Возможно Вы неправильно списали с условия во втором задании, пересмотрите условие, я заменила "+" на знак умножения.
б)Перенесём правую часть уравнения влевую часть уравнения со знаком минус.Уравнение превратится изa*(a - 3) = 2*a - 6вa*(a - 3) + -2*a + 6 = 0Раскроем выражение в уравненииa*(a - 3) - 2*a + 6Получаем квадратное уравнение 2 6 + a - 3*a - 2*a = 0 Это уравнение вида a*x^2 + b*x + c.Квадратное уравнение можно решитьс дискриминанта.Корни квадратного уравнения: ___ - b ± \/ D a1, a2 = , 2*a где D = b^2 - 4*a*c - это дискриминант.Т.к.a = 1b = -5c = 6, тоD = b^2 - 4 * a * c = (-5)^2 - 4 * (1) * (6) = 1Т.к. D > 0, то уравнение имеет два корня.a1 = (-b + sqrt(D)) / (2*a)a2 = (-b - sqrt(D)) / (2*a)a1 = 3a2 = 2