Если числа натуральные, то каждое следующее число больше предыдущего числа на единицу))) например: 2; 3; 4; 5;... в общем виде это можно записать так: n; (n+1); (n+2); (n+3);... 1) сумму трех последовательных натуральных чисел, меньшее из которых равно n: n + n+1 + n+2
четное число: 2n последовательные чётные натуральные числа: 2n; 2(n+1); 2(n+2); 2(n+3);... например: 8; 10; 12; 14;... (здесь n=4) например: 4; 6; 8;... (здесь n=2) 2) произведение трех последовательных чётных натуральных чисел, большее из которых равно 2k: 2(k-2) * 2(k-1) * 2k
Это задача,насколько я помню,решается методом интервалов:сначала нужно каждый множитель приравнять к 0.Чтобы первый множитель(x-4) был равен 0,x=4.Так же со второй скобкой.Два получившихся значения x выстраиваем на координатном луче.Соединяем два значения дугой.И проводим еще две дуги от концов средней дуги до бесконечностей(+ или -).Знаки в дугах должны чередоваться.Например,подставим 0 в интервал между первым иксом и вторым.Если в результате вычисления и перемножения получается полож.число,над скобкой ставим +,а над остальными -.Если отриц.,над средней -,над остальными +.Если случай 1(когда + в серед.),тогда пишем y>0 при x (знак принадлежности) [x1;x2].Если случай 2(Когда - в серед.),пишем y>0 при x (зн.принадл.[-беск.;x1]и[x2;+беск.],где x1-меньшее значение x,x2-большее.
например: 2; 3; 4; 5;...
в общем виде это можно записать так:
n; (n+1); (n+2); (n+3);...
1) сумму трех последовательных натуральных чисел, меньшее из которых равно n:
n + n+1 + n+2
четное число: 2n
последовательные чётные натуральные числа:
2n; 2(n+1); 2(n+2); 2(n+3);...
например: 8; 10; 12; 14;... (здесь n=4)
например: 4; 6; 8;... (здесь n=2)
2) произведение трех последовательных чётных натуральных чисел, большее из которых равно 2k:
2(k-2) * 2(k-1) * 2k