М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Vivy12
Vivy12
17.04.2023 01:20 •  Алгебра

1.отношение чисел a и b равно 2/3 . найдите 3a/b 2.отношение чисел a и b равно 2 2/3. найдите отношение a+b/b

👇
Ответ:
BelkaNext
BelkaNext
17.04.2023

1)

a/b=23

3a/b=x

x-?

 Находим  х крест накрест

 

x=(3a/b * 23)/a/b

x=(69a/b)/a/b

x=69a/b  *   b/a

сокращаям крест накрест, получаем

x=69

3a/b=69

 

2)напиши точнее второе задание сколько равно отношение а и в

4,8(52 оценок)
Открыть все ответы
Ответ:
sukdimka2013
sukdimka2013
17.04.2023

Дана функцию f(x) = (x² - 3x) / (x - 4 ).

1 ) Найдите наибольшее и наименьшее значения функции на данном промежутке [-1; 3].  

2 ) Найдите промежутки возрастания и убывания и точки экстремума функции  .

ответ:  1 )   наибольшее 1  ;   наименьшее   - 0,8 .

2 )

Функция возрастает: x ∈( -∞ ; 2 ]  и x ∈[ 6 ;∞) .

Функция  убывает   x∈[2 ; 4) и x ∈(4 ;6] ;

Точки экстремумов:  x =2 точка максимума  и x = 6 точка минимума .

Объяснение:   D(f) : ( - ∞ ; 4)  ∪ (4 ; ∞ )                   [    R \ {4 }    ]

( u(x) /v(x) ) ' =  ( u'(x)*v(x) - u(x)*v'(x) ) / v²(x)

f ' (x) = ( (x² - 3x) / (x - 4 ) ) ' =( (x² - 3x) ' *(x - 4 ) - (x² - 3x)*(x-4) ' ) / (x-4)² =

( (2x - 3)*(x - 4 ) - (x² - 3x)* 1 ) / (x-4)²  = (x² - 8x +12) / (x-4)² =(x-2)(x-6) / (x-4)².

f ' (x)  = 0 ⇔(x-2)(x-6) / (x-4)² =0 ⇒ x₁ =2 ,  x₂ = 6 .

f'(x) не существует в точке x =4 , но в этой точке не существует и функция  

1)

* * *    x₂ = 6 ∉  [ -1 ; 3 ]      * * *

x₁=2 ∈ [ -1 ; 3 ]      f (x₁ ) =f (2 )  =(2² -3*2) /(2 - 4)  = 1 ;

f (a ) =f (-1 ) =( (-1)² -3*(-1) ) /( (-1) - 4)  = - 4/5 = - 0,8 ;

f(b) = f(3) = (3² - 3*3) /(3 -4) = 0

На  промежутке [-1;3]  наибольшее значение функции  равно 1 (если x=2 ),  наименьшее значение  -0,8 (если x= - 1 ) .  

2)

Промежутки возрастания и убывания и точки экстремума функции  .

f ' (x)  = 0 ⇔(x-2)(x-6) / (x-4)² =0        ⇒ x₁ =2 ,  x₂ = 6 .

Функция  возрастает  , если  f ' (x)  ≥ 0

Функция убывает  ,  если  f ' (x) ≤  0

По методу  интервалов

f '(x )  + + + + + + + + + + [ 2 ]  - - - - - - - - - - [ 6]  + + + + + + +

f (x )  ↑  (возрастает)            ↓ (убввает)             ↑  (возрастает)

Функция возрастает: x ∈( -∞ ; 2 ]  и x ∈[ 6 ;∞) .

Функция  убывает   x∈[2 ; 4) и x ∈(4 ;6] .

x =2  и   x=6 точки  экстремумов ( производная функции меняет знак при прохождения через эти точки )

x =2 точка максимума ,   f(2) = 1

x =6 точка  минимума  ,   f(6)=(6² -3*6) /(6 - 4)  =(36-18)/ 2=9.

4,7(85 оценок)
Ответ:
Nurzhan94
Nurzhan94
17.04.2023
ВЫПОЛНИМ ОПЕРАЦИЮ ПОТЕНЦИИРОВАНИЯ ТОГДА
1-2х ≤ 5х+25 так как основание лог меньше1
7х≥-24
х≥-24/7
Промежуток (-24/7 ; +бесконечность)

log3(x-6)+log3(x-8)>log3(27)
log3 {(x-6)(x-8)}>log3(27) потенциируем обе части тогда
(x-6)(x-8)>27
но тут не получается красивого решения, возможно в условии ошибка?

в третьем lgx (lgx+1) < 0 совокупность двух систем
совокупность:
                        первая система:
                                      lgx<0  ⇒решений нет
                                     (lgx+1)> 0  ⇒
                         вторая
                                      lgx>0     ⇒ промежуток (0;+бесконечность)
                                     (lgx+1)< 0    ⇒ lgx<-lg10 ⇒   х<0,1

x∈(0;0,1)
    
4,4(58 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ