Дана функция y=f(x), где f(x)= -x+3,4, если x<-2 f(x)= -2x+5, если -2≤ x≤ 3.5 f(x)= x²,если x>3.5 вычислите значения функций при заданных значениях аргумента . Расположите полученные числа в порядке убывания f(-3)= 3+3,4=6,4 f(x)= -x+3,4, если x<-2 f(-2) =4+5=9 f(x)= -2x+5, если -2≤ x≤ 3.5 f(3) =-6+5=-1 f(x)= -2x+5, если -2≤ x≤ 3.5 f(4)=16 f(x)= x²,если x>3.5 f(0)= 0+5=5 f(x)= -2x+5, если -2≤ x≤ 3.5 f(3.5)=-7+5=-2 f(x)= -2x+5, если -2≤ x≤ 3.5
Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
(x² - 9)/(|x + 1| - 4) = 0
одз |x + 1| ≠ 4
x ≠ 3 x≠-5
x² - 9 = 0
x = +-3
x = 3 нет по одз
x = -3 да
ответ В -3