1) F`(x)=3x²-6x-9 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²-6x-9=0 3·(x²-2x-3)=0 x²-2x-3=0 D=16 x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов Обе точки принадлежат указанному промежутку Не проверяя какая из них точка максимума, какая точка минимума, просто находим F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2) F`(x)=3x²+18x-24 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²+18x+24=0 3·(x²+6x+8)=0 x²+6x+8=0 D=36-4·8=36-32=4 x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов Обе точки не принадлежат указанному промежутку
Понятно, что в больших коробках и в маленьких коробках количество книг одинаковое и равно половине от общего количества книг (примем за Х). Неодинаково количество больших и маленьких коробок. Пусть больших коробок было А штук, а меленьких В штук. Тогда 24*А - количество книг в больших коробках, 15*В - количество книг в маленьких коробках. И там, и там половина от общего количества книг (по условию). То есть, 24*А = 15*В = Х/2. Мы знаем, что больших коробок на 3 меньше, значит А - 3 = В. Подставим это значение В в наше первое уравнение: 24А = 15(А-3) 24А = 15А-45 А = 5 - столько было больших коробок, а книг в них, соответственно, 120 (24 * 5). Маленьких коробок было 8 (5 + 3), и книг в них тоже 120. Следовательно, всего книг 120 * 2 = 240. ответ: 240 книг.
Lq(x² +x +8) <1 ⇔0 < x² +x +8 < 10 ⇔{ x² +x +8 > 0 ; x² +x +8 < 10 ⇔
{ x² +x +8 > 0 ; x² +x -2 < 0 ⇔ { x∈R ; (x +2)(x-1) < 0 ⇔ { x∈R ; x ∈(-2;1).⇒
x ∈(-2;1). Два целых решения: { -1 ; 0}.
---
* * * x² +x +8 =(x+1/2)² + 7 3/4 >0 || или D =1² -4*8 = -31< 0 ⇒x² +x +8> 0 ||
* * * x² +x -2 =0 ; D=1² -4*1*(-2) =9 =3² . x₁ = (-1-3)/2 = -2 ;x₂ = (-1+3)/2 =1.
* * *x² +x -2 = ( x-(-2))(x-1) =(x+2)(x-1).
2.
{х<5 ; log0.2 (x+2)>=log0.2 (x²-5x+9) .⇔{х<5 ; 0<x+2≤ x²-5x+9.⇔
{х<5 ; x+2>0 ; x ≤ x²-5x+9. ⇔{ х<5 ; x> -2 ; 0 ≤ x²-6x+9.⇔
{ -2<x<5 ;(x-3)² ≥0 ⇔ { -2<x<5 ;x∈(-∞;∞) .⇒x∈( -2; 5) .
сумма целых решения системы неравенств (-1+ 0 +1+2+3+4) =9.
3.
log2 (3x-1)/(2-x) < 1 .
Основание логарифма 2 > 1 ,поэтому:
⇔{ 3x-1)/(2-x) >0 ;3x-1)/(2-x) < 2⇔{ 3(x-1/3)/(2-x) >0 ;(3x-1)/(2-x) -2 < 0.⇔
{ 3(x-1/3)/(x -2) <0 ;5(x-1)/(x-2) > 0.⇔{ x∈(1/3;2) ;x∈(-∞ ;-1)U(2 ;∞) .⇒
x∈(1/3 ; 1).