Пусть х кубометров грунта в час может вырыть первый экскаватор, тогда второй экскаватор роет у кубометров в час. За 6 часов совместной работы 6х+6у они вырыли 330 кубометров грунта: 6х+6у=330 (1) Когда же один работал 7 часов (7х), а другой 5 часов (5у), было вырыто 325 кубометров грунта: 7х+5у=325 (2)
Составим и решим систему уравнений (методом сложения):
Умножим первое уравнение на -1,2
=(-5x+7x) + (-5у+5у)=-275+325 2х=50 х=50÷2=25 кубометров грунта в час вырывает первый экскаватор.
Подставим числовое значение х в одно из уравнений: 6х+6у=330 6×25+6у=330 6у=330-150 6у=180 у=180÷6 у=30 кубометров грунта в час вырывает второй экскаватор. ответ: первый экскаватор вырывает 25 кубометров грунта в час, а второй - 30 кубометров грунта в час.
Так как вопрос архивный, то вместо удалённого решения вставляю свое. Примем за 1 объём бассейна. Пусть через 3-ю трубу бассейн наполняется за x часов, значит, через 1-ю трубу он наполнится за x+8 часов, а через 2-ю - за x+8-6=x+2 часов. 1/x - скорость наполнения бассейна через 3-ю трубу, 1/(x+2) - скорость наполнения через 2-ю трубу и 1/(x+8) - через 1-ю. Так как при одновременно открытых 1-й и 2-й трубе бассейн наполняется за то же самое время, что при открытой только 3-й трубе,то 1/(x+2)+1/(x+8)=1/x. Умножая обе части этого уравнения на x(x+2)(x+8), получим x(x+8)+x(x+2)=(x+2)(x+8); x^2+8x+x^2+2x=x^2+10x+16; 2x^2+10x=x^2+10x+16: x^2=16, и так как x>0, то x=4. Таким образом через одну 3-ю трубу бассейн наполняется за 4 часа, через одну 2-ю трубу - за 4+2=6 часов, и через одну 1-ю - за 4+8=12 часов. Проверка: 1/6+1/12=1/4, 2/12+1/12=3/12. ответ: Через одну третью трубу бассейн наполняется за 4 часа.
а)
9+13x=35+26x
13x-26x=35-9
-13x=26
x=26/-13
x=-2
в)
0.81х - 71 = 1.11х + 1
0.81х - 1.11х = 1 + 71
-0.3х = 72 | : (-0.3)
х = -240
б)
7/9x+3=2/3x+5
7/9x-2/3x=5-3
3/27х=2
1/9х=2/1
х=2/1:1/9
х=2/1*9/1
х=18
г)
1/3у-1/4у=-5+4
1/12y=-1
y=-1/1/12
y= -12