Для решения всех трех задач применяем правило нахождения геометрической вероятности: Если фигура F₁ содержится в фигуре F, тогда вероятность попадания в фигуру F₁, при условии попадания в фигуру F равна отношению площадей: Р=S(F₁):S(F)
Задача 1 (рис.1)
Квадрат ABCD разбит на 9 квадратиков одинаковой площади. Площадь каждого такого квадратика равна 1/9 от площади квадрата АВСD. Попадание в каждый из этих квадратиков (в том числе и в F₁ - правый верхний, F₂ - центральный и F₃ - левый квадратики) равновероятно и по правилу нахождения геометрической вероятности составляет
Задача 2 (рис.2)
Площадь треугольника АВС составляет половину площади квадрата АВСD, поэтому, вероятность попадания в треугольник АВС по правилу нахождения геометрической вероятности равна:
Площадь треугольника АОВ составляет четверть площади квадрата АВСD, поэтому, вероятность попадания в треугольник АОВ по правилу нахождения геометрической вероятности равна:
Задача 3 (рис.3)
Площадь фигуры ADCDEF состоит из суммы площадей квадрата BCED и площадей равносторонних (и равных друг другу) треугольников BAF и CDE.
Пусть сторона квадрата и треугольника равна а, тогда
Площадь фигуры ABCDEF равна
Итак, вероятность попадания в квадрат BCEF по правилу нахождения геометрической вероятности равно отношению площади квадрата BCEF к площади фигуры ADCDEF и составляет
а вероятность попадания в каждый из равносторонних треугольников BAF и CDE по правилу нахождения геометрической вероятности равно отношению площади треугольника к площади фигуры ADCDEF и составляет
V - знак квадратного корня V(5x+7) - V(x+4) =4x+3 ОДЗ: {5x+7>=0 {x+4>=0
{5x>= -7 {x>= -4
{x>=-7/5 {x>= -4
Чтобы избавиться от рациональности, возведем все члены уравнения в квадрат, но для этого правая часть уравнения должна быть положительной: 4x+3>=0; x>= -3/4 У нас получилась следующая ОДЗ: {x>= -7/5 {x>= -4 {x>= -3/4 Решением этой системы будет промежуток: [-3/4; + бесконечность) Итак, возводим в квадрат: (5x+7)^2 - (x+4)^2 = (4x+3)^2 25x^2+70x+49-x^2-8x-16=16x^2+24x+9 24x^2+62x+33= 16x^2+24x+9 24x^2+62x+33-16x^2-24x-9=0 8x^2+38x+24=0 |:2 4x^2+19x+12=0 D= 19^2-4*4*12=169 x1=(-19-13)/8=-4 - это посторонний корень, т.к. не входит в промежуток [-3/4; + беск.) x2=(-19+13)/8= -3/4 Получается, что уравнение имеет один корень => k=1 Корень x=-3/4 принадлежит интервалу (-1;0), значит q=-3/4 Решим уравнение 5k+4q= 5*1+4*(-3/4)=5-3=2 ответ:2
Объяснение:
Для решения всех трех задач применяем правило нахождения геометрической вероятности: Если фигура F₁ содержится в фигуре F, тогда вероятность попадания в фигуру F₁, при условии попадания в фигуру F равна отношению площадей: Р=S(F₁):S(F)
Задача 1 (рис.1)
Квадрат ABCD разбит на 9 квадратиков одинаковой площади. Площадь каждого такого квадратика равна 1/9 от площади квадрата АВСD. Попадание в каждый из этих квадратиков (в том числе и в F₁ - правый верхний, F₂ - центральный и F₃ - левый квадратики) равновероятно и по правилу нахождения геометрической вероятности составляет
Задача 2 (рис.2)
Площадь треугольника АВС составляет половину площади квадрата АВСD, поэтому, вероятность попадания в треугольник АВС по правилу нахождения геометрической вероятности равна:
Площадь треугольника АОВ составляет четверть площади квадрата АВСD, поэтому, вероятность попадания в треугольник АОВ по правилу нахождения геометрической вероятности равна:
Задача 3 (рис.3)
Площадь фигуры ADCDEF состоит из суммы площадей квадрата BCED и площадей равносторонних (и равных друг другу) треугольников BAF и CDE.
Пусть сторона квадрата и треугольника равна а, тогда
Площадь фигуры ABCDEF равна
Итак, вероятность попадания в квадрат BCEF по правилу нахождения геометрической вероятности равно отношению площади квадрата BCEF к площади фигуры ADCDEF и составляет
а вероятность попадания в каждый из равносторонних треугольников BAF и CDE по правилу нахождения геометрической вероятности равно отношению площади треугольника к площади фигуры ADCDEF и составляет