М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Sho9842s
Sho9842s
17.06.2021 18:13 •  Алгебра

сижу на контрольной работы
Очень от ❤️❤️❤️


сижу на контрольной работы Очень от ❤️❤️❤️

👇
Открыть все ответы
Ответ:
лулу36
лулу36
17.06.2021
1)
База индукции: 1

a_1=a_1+d*0=a_1 проверено.

Предположим, что утверждение верно для n=k.
a_{k}=a_1+d(k-1)=a_1+dk-d
Покажем, и докажем, что утверждение верно так же для n=k+1.
a_{k+1}=a_1+d[(k+1)-1]=a_1+dk
Так как , следуя предположению a_{k}=a_1+d(k-1)=a_1+dk-d то прибавив к данному выражению d. Мы получим  следующий член a_{k+1}=a_1+d[(k+1)-1]=a_1+dk.
Т.е. предположение верно. Ч.Т.Д.

2)
S_n= \frac{n[2a_1+d(n-1)]}{2}
База : 1
Проверка: S_1= \frac{2a_1}{2}=a_1

Предположение: n=k \Rightarrow S_k= \frac{k[2a_1+d(k-1)]}{2}= \frac{2a_1k+dk^2-dk}{2}

Теперь покажем и докажем, что данное выражение верно и при n=k+1:

Так как предыдущий член был равен k, то что бы узнать сумму первых k+1 членов, достаточно прибавить  k+1 член (используя формулу которую мы доказали ранее):
S_{k+1}= \frac{2a_1k+dk^2-dk}{2}+(a_1+dk)= \frac{2(a_1+dk)+2a_1k+dk^2-dk}{2}\\= \frac{2a_1+2dk+2a_1k+dk^2-dk}{2}= \frac{2a_1k+2a_1+dk^2+dk}{2}\\
= \frac{2a_1(k+1)+dk(k+1)}{2}= \frac{(k+1)(2a_1+dk)}{2}
т.е. мы пришли к изначальной формуле, если туда подставить k+1. Ч.Т.Д.

3)
Это не формула общего члена, это формула суммы.
При 
q=1 получается деление на ноль, поэтому сразу пишем q \neq 1
База: 1
b_1= \frac{b_1(1-q)}{(1-q)}=b_1
Предположим, что формула верна для: n=k
Покажем и докажем что формула верна для n=k+1:
Как и с суммой арифм.прогрессии. Мы добавим k+1 член к сумме.
b_{k+1}= \frac{b_1(1-q^k)}{1-q}+b_1q^k= \frac{(1-q)b_1q^k+b_1(1-q^k)}{1-q}\\= \frac{b_1[(1-q)q^k+(1-q^k)]}{1-q}= \frac{b_1[q^k-q^{k+1}+1-q^k]}{1-q}= \frac{b_1(1-q^{k+1})}{1-q}
Ч.Т.Д.
4,4(66 оценок)
Ответ:
lucky20171
lucky20171
17.06.2021
1)
(3n+1)(3n-1)=(3n)²  - 1²=9n² -1
ответ: В)

2)
(4x-1)²=(4x)² - 2*4x*1 +1²=16x² - 8x +1
ответ: Б)

3)
4a² - 25=(2a)² - 5²=(2a-5)(2a+5)
ответ: B)

4)
-0.09x⁴ + 81y¹⁶ = 81y¹⁶ - 0.09x⁴ = (9y⁸)² - (0.3x²)²=(9y⁸ - 0.3x²)(9y⁸+0.3x²)=
ответ: В)

5)
В) a² -4b²=(a-2b)(a+2b)
ответ: В)

6)
a² - 8a+16=(a-4)²
ответ: Б)

7) 
ответ: Б)

8)
(x+8)(x-8)-x(x-6)=x² -64 - x² +6x=6x-64
ответ: Г)

9)
(7m-2)² - (7m-1)(7m+1)=49m² -28m+4 - 49m² +1= -28m+5
ответ: В)

10)
(c-4)² - (3-c)²=(c-4-3+c)(c-4+3-c)=-1(2c-7)= -2c+7=7-2c
ответ: Б)

11)
(x-4)² + 2(4+x)(4-x)+(x+4)² = (x-4)² -2(x+4)(x-4)+(x+4)²=
=(x-4-(x+4))²=(x-4-x-4)²=(-8)²=64
ответ: А)

12)
(4+a²)(a-2)(a+2)=(a²+4)(a²-4)=a⁴-16
ответ: Г)
4,6(89 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ