1)
30% числа k = 0,3a
35% числа p = 0,35p
0,3k > 0,35p на 20
Первое уравнение:
0,3k - 0,35p = 20
2)
20% числа k = 0,2а
30% числа p = 0,3р
0,3р > 0,2k на 8
Второе уравнение:
0,2k + 8 = 0,3p
3)
Решаем систему.
{0,3k-0,35р = 20
{0,2k - 0,3р = - 8
Первое умножим на 2, а второе умножим на (-3)
{0,6k-0,7р = 40
{-0,6k+0,9р = 24
Сложим
0,6k-0,7р -0,6k+0,9р = 40+24
0,2р = 64
р = 64 : 0,2
р = 320
В первое уравнение 0,3k - 0,35p = 20 подставим р = 320.
0,3k - 0,35·320 = 20
0,3k - 112 = 20
0,3k = 112 + 20
0,3k = 132
k = 132 : 0,3
k = 440
ответ: k = 440;
р = 320.
Для того, чтобы ответить на вопрос задания, нужно определиться, что ищем тангенс угла, образованного апофемой SM и высотой MC основания ABC.
Bспомним, что основание высоты правильной пирамиды находится в точке пересечения высот основания, а сама высота перпендикулярна основанию.
Эта точки делит их ( потому что высоты правильного треугольника и медианы и биссектрисы) в отношении 2:1, считая от вершины.
Следовательно, основание О высоты SO пирамиды отстоит от боковой грани на
одну треть высоты MC плоскости правильного треугольника.
Это расстояние 6:3=2
Так как высота пирамиды SO, треть MO высоты основания и апофема SM являются сторонами прямоугольного трегольника SOM,
тангенс угла SMO
между плоскостью боковой грнани и плоскости основания находим отношением противолежащего углу катета к прилежащему.
tg SMO= SO:OM=16:2= 8