1. Решите систему уравнений методом подстановки: (4х+у=3 и 6х-2у=1)
2. Решите систему уравнений методом сложения:(3х-2у=3 и 5х+2у=16)
3. Студент получил стипендию 600 руб. купюрами достоинством 50 руб. и 10 руб., всего 24 купюры. Сколько всего было выдано студенту 50-рублевых и 10-рублевых купюр в отдельности?
4. Прямая y=kx+b проходит через точки А(3;8) и В(-4;1). Найдите k и b и запишите уравнение этой прямой.
5. Решите систему уравнений:3-(х-2у)-4у=18 и 2х-3у+3=2(3х-у)
Скорость поезда = х Скорость автомобиля = у 1-ое уравнение: 3х + 2у = 320 2-ое уравнение: у - х = 10 → у = 10 + х; → подставляем значение х в 1-ое уравнение, получаем: 3х + 2(10 + х) = 320 3х + 20 + 2х = 320 5х = 320 - 20 5х = 300 х = 60 → подставляем значение х во 2-ое уравнение: у - 60 = 10 у = 60 +10 у = 70 ответ: 60 км/ч - скорость поезда; 70 км/ч - скорость автомобиля.
Алгебра .ТЕМА.КОНТРОЛЬНАЯ РАБОТА №9
Вариант 1
1. Решите систему уравнений методом подстановки: (4х+у=3 и 6х-2у=1)
2. Решите систему уравнений методом сложения:(3х-2у=3 и 5х+2у=16)
3. Студент получил стипендию 600 руб. купюрами достоинством 50 руб. и 10 руб., всего 24 купюры. Сколько всего было выдано студенту 50-рублевых и 10-рублевых купюр в отдельности?
4. Прямая y=kx+b проходит через точки А(3;8) и В(-4;1). Найдите k и b и запишите уравнение этой прямой.
5. Решите систему уравнений:3-(х-2у)-4у=18 и 2х-3у+3=2(3х-у)
Объяснение: