М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
masha859689
masha859689
19.08.2022 10:28 •  Алгебра

Как решить вот это уравнение с параметром 10 класс: При каких а уравнение х^2+(a-7)|x|-2a^2+7a=0 имеет три корня?

👇
Открыть все ответы
Ответ:
valu49
valu49
19.08.2022

(\frac{1}{2}; -3\frac{1}{2}), \quad (2; 1);

Объяснение:

\left \{ {{3x-y=5} \atop {3x^{2}+y^{2}=13}} \right. ;

Выражаем из верхнего уравнения переменную "у":

\left \{ {{y=3x-5} \atop {3x^{2}+y^{2}=13}} \right. ;

Подставляем полученное выражение в нижнее уравнение вместо "у":

\left \{ {{y=3x-5} \atop {3x^{2}+(3x-5)^{2}=13}} \right. ;

Раскрываем квадрат разности двух выражений, пользуясь следующей формулой:

(a-b)^{2}=a^{2}-2ab+b^{2};

(3x-5)^{2}=(3x)^{2}-2 \cdot 3x \cdot 5+5^{2}=3^{2} \cdot x^{2}-30x+25=9x^{2}-30x+25;

\left \{ {{y=3x-5} \atop {3x^{2}+9x^{2}-30x+25=13}} \right. ;

Приведём подобные слагаемые. Для этого вынесем общий множитель за скобки:

\left \{ {{y=3x-5} \atop {(3+9) \cdot x^{2}-30x+25=13}} \right. ;

Выполним сложение в скобке и перенесём слагаемое 13 со знаком минус в левую часть уравнения:

\left \{ {{y=3x-5} \atop {12x^{2}-30x+25-13=0}} \right. ;

Выполним вычитание:

\left \{ {{y=3x-5} \atop {12x^{2}-30x+12=0}} \right. ;

Разделив все части нижнего уравнения на 6, получим:

\left \{ {{y=3x-5} \atop {2x^{2}-5x+2=0}} \right. ;

Теперь разделим все части нижнего уравнения на 2 для того, чтобы получить приведённое квадратное уравнение:

\left \{ {{y=3x-5} \atop {x^{2}-2\frac{1}{2}x+1=0}} \right. ;

Решаем нижнее уравнение по теореме Виета. Согласно ей, сумма корней приведённого квадратного уравнения равна коэффициенту при "х", взятому с противоположным знаком, а их произведение — свободному члену:

\left \{ {{x_{1}+x_{2}=-(-2\frac{1}{2})} \atop {x_{1} \cdot x_{2}=1}} \right. ;

Минус перед скобкой и минус после скобки дают плюс:

\left \{ {{x_{1}+x_{2}=2\frac{1}{2}} \atop {x_{1} \cdot x_{2}=1}} \right. ;

Корнями этой системы являются числа 1/2 и 2.

Мы нашли два значения переменной "х". Теперь подставим каждое из них в верхнее уравнение:

\left \{ {{y=3 \cdot \frac{1}{2}-5} \atop {x=\frac{1}{2}}} \right. \Leftrightarrow \left \{ {{y=\frac{3}{2}-\frac{10}{2}} \atop {x=\frac{1}{2}}} \right. \Leftrightarrow \left \{ {{y=-\frac{7}{2}} \atop {x=\frac{1}{2}}} \right. \Leftrightarrow \left \{ {{x=\frac{1}{2}} \atop {y=-3\frac{1}{2}}} \right. ;

\left \{ {{y=3 \cdot 2-5} \atop {x=2}} \right. \Leftrightarrow \left \{ {{y=6-5} \atop {x=2}} \right. \Leftrightarrow \left \{ {{x=2} \atop {y=1}} \right. ;

Мы получили две пары корней:

(\frac{1}{2}; -3\frac{1}{2}), \quad (2; 1);

Они являются решениями системы.

4,4(15 оценок)
Ответ:
polosa48rus
polosa48rus
19.08.2022
Определение: Квадратным уравнением называется уравнение вида ax²+bx+c,где x - переменная, a, b, c - постоянные (числовые) коэффициенты. 

В общем случае решение квадратных уравнений сводится к нахождению дискриминанта (математики ввели себе такой термин для упрощения решения квадратных уравнений). По мимо этого, корни можно найти по теореме Виета, но вот доказать, имеет ли уравнение корни или нет по ней, к сожалению, нельзя.

Формула дискриминанта: D=b²-4ac,
откуда a,b, с - это коэффициенты из уравнения.

Если D>0 (положительный), то уравнение имеет два корня.
Если D=0, то один корень.
Если D<0 (отрицательный), то уравнение корней не имеет.

Поэтому всё задание сводится к нахождению дискриминанта:

x²-10x+27=0

a=1 (если возле переменной не стоит никакое число (например, 2, 3, -10 и т.д.), то подразумевается, что там спряталась единица)
b=-10
c=27

Подставим эти коэффициенты в формулу дискриминанта. 
D=(-10)²-4×27×1=100-108=-8 (число -8 отрицательное, поэтому уравнение корней не имеет)

x²+x+1=0
a=1, b=1, c=1
D=b²-4ac=1²-4×1×1=1-4=-3 (-3 отрицательное число, поэтому уравнение корней не имеет)
4,5(32 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ