Если нужно найти периметр прямоугольника, решение будет таково: Известен катет треугольника и то что гипотенуза больше на 3 см другого катета. По теореме Пифагора можем найти и гипотенузу и катет. A^2+B^2=C^2 9^2+X^2= (X+3)^2 - здесь Х это неизвестный катет. 81+Х^2= X^2+6X+9 - Открыли скобки по известной формуле бинома . Переносим нужные члены и получаем: 81-9-6Х=Х^2-X^2=0 72-6x=0 72=6x x=12 Получили что катет равняется 12, а гипотенуза 12+3=15 Ищем периметр прямоугольника: 2(9+12)=18+24=42
Подробнее – на Otvet.Ws – https://otvet.ws/questions/9573791-pozhaluista-srochno-nadooo-odin-iz-katetov-pryamougolnogo.html
Многое в поставленной вами задачи зависит от того Какие значения может принимать Х изменяясь в своей области определения . Кроме того важно сразу отметить что если вы ищете аналитическую закономерность (виде некоторой формулы) то её может и не быть.
Если множество значений Х дискретно то можно использовать любой из стандартных методов интерполяции : линейную, дробно- линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д
Приведу пример нахождения интерполяционного многочлена Тейлора по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1; многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2- подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3 а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений: P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1; P(X2)=1+A1*1+A2*1*1=2 P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2 Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости между X и Y. Естественно этот результат не единственен. Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов»
Если нужно найти периметр прямоугольника, решение будет таково: Известен катет треугольника и то что гипотенуза больше на 3 см другого катета. По теореме Пифагора можем найти и гипотенузу и катет. A^2+B^2=C^2 9^2+X^2= (X+3)^2 - здесь Х это неизвестный катет. 81+Х^2= X^2+6X+9 - Открыли скобки по известной формуле бинома . Переносим нужные члены и получаем: 81-9-6Х=Х^2-X^2=0 72-6x=0 72=6x x=12 Получили что катет равняется 12, а гипотенуза 12+3=15 Ищем периметр прямоугольника: 2(9+12)=18+24=42
Подробнее – на Otvet.Ws – https://otvet.ws/questions/9573791-pozhaluista-srochno-nadooo-odin-iz-katetov-pryamougolnogo.html