Объяснение:
4. Раскрываем скобки:
2y^2 - 4y - 14y+28 = 0
2y^2 -18y+28 = 0
получаем квадратное уравнение, решаем через дискриминант :
записываем условие : a = 2; b= -18; c= 28;
формула D=b^2 - 4ac= 324 - 224= 100, рассчитываем корень из D = 10( 10^2 =100), далее находим х1 и х2 ;
x1 = -b(при этом b ставим не минус, а противоположный знак)+корень из D : 2a= (18+10): 4= 28:4= 7;
х2= -b - корень из D: 2а =(18 - 10):2а= 8:4= 2;
ответ: x1 = 7; x2= 2.
1. Раскрываем скобки - 2x +4 - 2x^2-4x+x^2-9, и далее решаем:
-2x - 5 - 1x^2 - квадратное уравнение, решаем через D (при этом a=
- 1, b=-2, c=-5)
d=b^2 - 4ac = 4 - 20= -16, в итоге получаем что корней в данном уравнении НЕТ, т.к если D<0 - КОРНЕЙ НЕТ, соответственно значение выражения не зависит от значения переменной.
ответ: Корней нет.
2. -4*(2.5 а-1.5)+5.5а - 8
при а= -0.5
во первых упростим выражение: -10а + 6+ 5.5а - 8= -4.5а -2;
подставим значение а = - 0.5
(-4.5 ) *(-0.5) - 2 = 2.25 - 2 = 0.25
ответ: 0.25.
3. (-2а +b)^2 (как я понял это квадрат) : -4а^2 +4ab +b^2, в общем я не смог решить это задание , но это либо ответ под д) либо е) другие вообще не подходят, т.к не соответстуют правилам сокращённого умножения.
y=Π/3-x
sin x+cos(Π/3-x)=1
sin x+cos Π/3*cos x+sin Π/3*sin x=1
sin x*(1+√3/2)+cos x*1/2=1
Переходим к половинным аргументам и умножаем все на 2.
2sin(x/2)*cos(x/2)*(2+√3) + cos^2(x/2) - sin^2(x/2) = 2cos^2(x/2)+2sin^2(x/2)
Переносимости все в одну сторону
3sin^2(x/2) - (4+2√3)*sin(x/2)*cos(x/2) + cos^2(x/2) = 0
Делим все на cos^2(x/2)
3tg^2(x/2)-(4+2√3)*tg(x/2)+1=0
Замена t=tg(x/2)
3t^2-(4+2√3)*t+1=0
Получили обычное квадратное уравнение
D/4=(2+√3)^2-3*1=4+4√3+3-3= 4+4√3
t1=tg(x/2)=[2+√3-√(4+4√3)]/3
t2=tg(x/2)=[2+√3+√(4+4√3)]/3
Соответственно
x1=2*arctg(t1)+Π*n; y1=Π/3-x1
x2=2*arctg(t2)+Π*n; y2=Π/3-x2
у'=3*6*(2-x)'*(2-x)^(6-1)=-18*(2-x)^5