Дробь не имеет смысл если знаменатель равен 0 он равен 0 когда хотя бы один множитель равен 0 т.е m*(m+2)²*n*(n-5) =0 при m=0 n=0 m+2=0 ⇒ m=-2 n-5=0 ⇒ n=5 ⇒ОДЗ m≠0; n≠0 ; m≠-2; n≠5 дробь равна 0 ,когда числитель равен 0 аналогично ищем корни (3m+18)(3n²-3)=0 если 3*(m+6)*3(n²-1)=0 9*(m+6)*(n²-1)=0 m+6=0⇒m=-6 n²-1=0 ⇒n=1; и n=-1 все полученные корни удовлетворяют ОДЗ
V - знак квадратного корня V(5x+7) - V(x+4) =4x+3 ОДЗ: {5x+7>=0 {x+4>=0
{5x>= -7 {x>= -4
{x>=-7/5 {x>= -4
Чтобы избавиться от рациональности, возведем все члены уравнения в квадрат, но для этого правая часть уравнения должна быть положительной: 4x+3>=0; x>= -3/4 У нас получилась следующая ОДЗ: {x>= -7/5 {x>= -4 {x>= -3/4 Решением этой системы будет промежуток: [-3/4; + бесконечность) Итак, возводим в квадрат: (5x+7)^2 - (x+4)^2 = (4x+3)^2 25x^2+70x+49-x^2-8x-16=16x^2+24x+9 24x^2+62x+33= 16x^2+24x+9 24x^2+62x+33-16x^2-24x-9=0 8x^2+38x+24=0 |:2 4x^2+19x+12=0 D= 19^2-4*4*12=169 x1=(-19-13)/8=-4 - это посторонний корень, т.к. не входит в промежуток [-3/4; + беск.) x2=(-19+13)/8= -3/4 Получается, что уравнение имеет один корень => k=1 Корень x=-3/4 принадлежит интервалу (-1;0), значит q=-3/4 Решим уравнение 5k+4q= 5*1+4*(-3/4)=5-3=2 ответ:2
он равен 0 когда хотя бы один множитель равен 0
т.е m*(m+2)²*n*(n-5) =0 при m=0
n=0
m+2=0 ⇒ m=-2
n-5=0 ⇒ n=5
⇒ОДЗ m≠0; n≠0 ; m≠-2; n≠5
дробь равна 0 ,когда числитель равен 0
аналогично ищем корни (3m+18)(3n²-3)=0 если
3*(m+6)*3(n²-1)=0
9*(m+6)*(n²-1)=0
m+6=0⇒m=-6
n²-1=0 ⇒n=1; и n=-1
все полученные корни удовлетворяют ОДЗ