x^4+px^2+g X^2=t t^2+pt+g 1) уравнение x^4+px^2+g имеет 4 корня, если t^2+pt+g имеет 2 различных корня, т.е. D>0 x1=(-p+√(p^2-4g))/2 x2=(-p-√(p^2-4g))/2 и при этом x1>0 и x2>0 , тогда t1=√((-p+√(p^2-4g))/2) t2=-√((-p+√(p^2-4g))/2) t3=√((-p-√(p^2-4g))/2) t4=-√((-p-√(p^2-4g))/2) 2) уравнение x^4+px^2+g имеет 2 корня, если t^2+pt+g имеет 1 корень, т.е. D=0 . p^2-4g=0 x=-p/2 и при этом x>0 t1=√(-p/2) t2=-√(-p/2) или если D>0, но при этом x1=(-p+√(p^2-4g))/2 x2=(-p-√(p^2-4g))/2 и получается, что либо х1<0 либо x2<0 3) уравнение x^4+px^2+g не имеет корней, если t^2+pt+g не имеет корней, т.е. D<0 или если D>0, но при этом x1=(-p+√(p^2-4g))/2 x2=(-p-√(p^2-4g))/2 и получается, что x1<0 и x2<0 или если D=0 и x=-p/2 и при этом x<0
Докажем методом математической индукции.
Пусть дано четное n = 2m, тогда требуется доказать, что
(17^(2m) - 1) делится нацело на 96.
17^(2m) - 1 = (17^2)^m - 1 = 289^m - 1.
Докажем, что (289^m - 1) делится нацело на 96, при любом натуральном m.
1) База индукции: при m=1 имеем 289¹ - 1 = 288 = 3·96 делится нацело на 96.
2) Предположение индукции.
Предположим, что для всех натуральных k≤m 289^k - 1 делится нацело на 96, то есть, 289^k - 1 = 96·A, где А - целое число.
Тогда докажем, что для 289^(k+1) - 1 делится нацело на 96.
3) Индуктивный переход.
289^(k+1) - 1 = 289·289^k - 1 = 289·(289^k - 1 + 1) - 1 =
= 289·(289^k - 1) + 289 - 1 = 289·(289^k - 1) + 288 = W,
т.к. по предположению индукции 289^k - 1 = 96·A, то имеем
W = 289·96·A + 3·96 = 96·( 289·A + 3) и т.к. A - целое, то и (289·A + 3) - тоже целое и 289^(k+1) - 1 делится нацело на 96. Ч.Т.Д.