2) Дайте определение функции, возрастающeй в промежутке; убывающей в промежутке. 3) Приведите примеры возрастающей и убывающей линейной функции? Сформулируйте и докажите соответствующее свойство линейной функции. 4) Как изменяется в каждом из промежутков (-∞; 0) и (0; +∞) функция y=k/x? Рассмотрите случаи k < 0 и k > 0.
1)графиком линейной функции и функции прямой пропорциональности является прямая. графиком функции обратной пропорциональности является гипербола. 2) Функция возрастает на промежутке если из того, что х1>x2 следует f(x1)>f(x2), где х1 и х2 из области определения и принадлежат рассматриваемому промежутку.
Функция убывает на промежутке если из того, что х1>x2 следует f(x1)<f(x2), где х1 и х2 из области определения и принадлежат рассматриваемому промежутку.
3) если k(коэффицент) положительный, функция возрастает, если отрицательный - убывает. Например у=х возрастает, у=-х убывает.
4) если k<0, то функция возрастает если k>0, функция убывает.
Нам задана функция графиком данной функции будет гипербола, "сдвинутая" влево на 2. (см. приложенные файлы) свойства: ∪ E(f): ∪ нули функции отсутствуют, функция бесконечно стремится к нулю, но это значение НИКОГДА не достигается. промежутки знакопостоянства: принимает только отрицательные значения на интервале: только положительные на интервале: функция монотонно убывает при x>-2 и при x<-2 функция не является ни четной, ни нечетной функция непериодическая. функция не ограничена ни сверху, ни снизу. претерпевает разрыв в точке х=-2.
3) Приведите примеры возрастающей и убывающей линейной функции? Сформулируйте и докажите соответствующее свойство линейной функции.
4) Как изменяется в каждом из промежутков (-∞; 0) и (0; +∞) функция y=k/x? Рассмотрите случаи k < 0 и k > 0.
1)графиком линейной функции и функции прямой пропорциональности является прямая. графиком функции обратной пропорциональности
является гипербола.
2) Функция возрастает на промежутке если из того, что х1>x2 следует f(x1)>f(x2), где х1 и х2 из области определения и принадлежат рассматриваемому промежутку.
Функция убывает на промежутке если из того,
что х1>x2 следует f(x1)<f(x2), где х1 и х2 из области определения и принадлежат рассматриваемому промежутку.
3) если k(коэффицент) положительный, функция возрастает, если отрицательный - убывает. Например у=х возрастает, у=-х убывает.
4) если k<0, то функция возрастает
если k>0, функция убывает.