ответ: 2*x³+5*x²+x-2=(x+1)*(x+2)*(2*x-1).
Объяснение:
Запишем данный многочлен в виде 2*(x³+5/2*x²+1/2*x-1). Для того, чтобы разложить многочлен в скобках на множители, нужно решить уравнение x³+5/2*x²+1/2*x-1=0. Это - приведённое кубическое уравнение, поэтому одним из его целых корней (если они есть) может быть целый делитель свободного члена данного уравнения, то есть числа -1. Таких делителей всего два: 1 и -1. Подставляя значения x=1 и x=-1 в данное уравнение, находим, что число x=1 не является корнем уравнения, а число x=-1 - является. Теперь разделим многочлен x³+5/2*x²+1/2*x-1 на двучлен x-(-1)=x+1. После этого получим тождество x³+5/2*x²+1/2*x-1=(x+1)*(x²+3/2*x-1). Теперь разложим на множители квадратный трёхчлен x²+3/2*x-1, для чего нужно решить уравнение x²+3/2*x-1=0. Оно имеет корни x1=1/2 и x2=-2, поэтому x²+3/2*x-1=0=(x-1/2)*(x+2). Тогда x³+5/2*x²+1/2*x-1=(x+1)*(x-1/2)*(x+2) и окончательно 2*x³+5*x²+x-2=(x+1)*(x+2)*(2*x-1).
В решении.
Объяснение:
Постройте график функции
у= х³-2х²/(х-2)
по плану:
1) Во что превращается функция после упрощения?
у = (х²(х - 2))/(х - 2);
Сократить числитель и знаменатель на (х - 2), функция превращается в уравнение квадратичной функции у = х².
График - парабола с центром в начале координат (0; 0), ветви направлены вверх.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у 9 4 1 0 1 - 9
2) Написать область определения функции.
Область определения - это проекция графика функции на ось Ох.
Обозначается как D(f) или D(у).
Область определения параболы - множество всех действительных чисел, потому что она проецируется на любую точку оси Ох.
Обычно запись: D(у) = R.
Но, так как х в знаменателе, по ОДЗ х не может быть равен 2, поэтому область определения данной функции - множество всех действительных чисел, кроме х = 2. В этой точке функция не определена.
D(у) = R : х ≠ 2.
3) ответ на вопрос: при каком значении а прямая у=а имеет с графиком ровно 2 общих точки ?
Согласно графика, при любом а > 0 (весь график выше оси Ох).