пусть первое число равно х, а второе у. Тогда 2х+у=11, а x^2+y^2=25.
Получаем систему уравнений:
2х+у=11;
x^2+y^2=25.
Выразим из первого уравнения у:
у=11-2х
и подставим полученное значение во втрое:
x^2+(11-2x)^2=25
x^2+121-44x+4x^2=25
5x^2-44x+121-25=0
5x^2-44x+96=0
Найдем дискриминант квадратного уравнения
D=b^2-4ac=1936-4*5*96=16
Так как дискриминант больше нуля то, квадратное уравнение имеет два корня:
x1=(-b+√D)/(2a)=(44+√16)/(2*5)=4.8
x2=(-b-√D)/2a=(44-√16)/(2*5)=4
В условии задачи сказано, что взяты натуральные числа, значит, нам подходит только х=4
Найдем у:
у=11-2х
у=11-2*4
у=3
ответ: взяты числа 4 и 3
Пусть х -скорость первого велосипедиста, (х-3) - скорость второго. Тогда время в пути первого велосипедиста 18/х, а второго - (18/(х-3)). 12 минут - это 12/60 или 1/5 часа. Составим уравнение
(18/(х-3)) -(18/х)=(1/5)
Умножим обе части уравнения на 5
(90/(х-3))-(90/х)=1
Приведем к общему знаменателю
(90х-90(х-3))/(х(х-3))=1
(90х-90х+270)/(x^2-3x)=1
270/(x^2-3x)=1
x^2-3x=270
x^2-3x-270=0
D=9+1080=1089
x1=(3+33)/2=18
x2=(3-33)/2=-15 - не удовлетворяет условию
Скорость первого веловипедиста 18 км/ч