Что бы решить данную систему графически: 1) Мы должны начертить на графике 2 функции по отдельности 2) Найти точки/точку пересечения графиков этих функций и определить координату данной\ых точки\точек. Это координата\координаты и будет решением данной системы.
А теперь давайте решим данную систему графически:
Начертим график функции (во вложении, график параболы)
Теперь начертим график функции ( во вложении, график прямой)
Объединяем 2 графика: (график во вложении)
И видим что 2 графика пересекаются в следующих координатах: (0,0) (2,8) Эти координаты и есть решения данной системы.
С системы уравнений
Длина-х, ширина-у, тогда 2(х+у)=62 2х+2у=62|2 х+у=31 у=31-х
ху=210
Теперь подставим во второе: х(31-х)=210
-х^2+31x-210=0|-1
x^2-31x+210=0
D=961-4*210=121=11
x1=31+11/2=21 x2=31-11/2=10
y1=31-21=10 y2=31-10=21 (21,10)(10,21)
ответ: длина-21, ширина-10 или длина-10, ширина-21.