7.6
Объяснение:
0,46•20=9,2
0,8•(-2)=-1,6
9,2+(-1,6)=7,6
Объяснение:
Степень числа, это произведение множителей, каждый из которых величиной ,
раз подряд, где
Когда мы делим степени с одинаковыми основаниями, основание остается без изменений, а из показателя степени делимого числа вычитают показатель степени делителя:
Где - любые натуральные числа, с условием, что
.
Запишем наш пример:
Для наглядности решения данный пример можно разделить на три части, и согласно свойству частного степеней, которое я записал выше можно было проще решить данный пример.
Первой частью будут известные числа:
(1)
Теперь запишем отдельно деление переменной :
(2)
Далее запишем переменную :
(3)
Так как по определению отрицательной степени:
Теперь совместим (1), (2) и (3):
- в дальнейшем данную дробь сократить невозможно, это и будет ответ.
a = 3
Объяснение:
Имеем выражение:
a^2 - 6 * a + 11.
Необходимо найти значение аргумента a, при котором значение выражения будет минимальным.
Здесь можно приравнивать значение выражения к нулю, можно решать квадратное уравнение, можно искать значение переменной методом подбора, но единственный практичный выделить у выражения квадрат суммы или разности двух чисел:
a^2 - 6 * a + 11 = a^2 - 2 * 3 * a + 3 * 3 + 2 = (a - 3)^2 + 2.
Получили сумму квадрата числа и двойки. Наименьшее значение суммы - 2, значит, a = 3.
ну так
0.46*20+0.8*(-2)
9,2-1.6=7.6