1) Показательная функция с основанием 6>1 монотонно возрастает. Большему значению функции соответствует большее значение аргумента: х²+2х>3 или х²+2х-3>0 или (х+3)(х-1)>0 ---------------(-3)--------------(1)---------------------- \\\\\\\\\\\\\\\\\\\\\ //////////////////// ответ. (-∞;-3)U(1;+∞) 2) Показательная функция с основанием 7>1 монотонно возрастает. Поэтому каждое свое значение только в одной точке. Если значения функции равны, то и аргументы равны: x-2=1/2 ⇒x=2,5 ответ. 2,5 3) 25=5² Показательная функция с основанием 7>1 монотонно возрастает. Поэтому каждое свое значение только в одной точке. Если значения функции равны, то и аргументы равны: х²-2х-1=2 х²-2х-3=0 (х+1)(х-2)=0 х=-1 или х=2 ответ. -1; 2 4) Замена переменной t²-5t+4=0 D=25-16=9 t=1 или t=4 ⇒ x=0 ⇒ x=2 ответ. 0; 2 5)Замена переменной t²-6t+5=0 D=36-20=16 t=1 или t=5 ⇒ x=0 ⇒ x=1 ответ. 0; 1
сложить неравенства...
ведь, если a > b и c > k, то
a+c > b+k
(можно еще вспомнить, что
если a > b, то a+k > b+k ---одно и тоже число к обеим частям неравенства добавили...)
а здесь: a+c > b+k в левой части слагаемое с больше k ---тем более верное равенство...
или иначе: если c > k, то можно записать, что с = k+x (очевидно, что x>0)
и из a+c > b+k можно записать a+k+x > b+k (a+k было больше... a+k+x еще больше)
исходя из этого, можно записать:
a+b + d+e > c+c
a+b+d+e > 2c
(a+b+d+e)/2 > c ---разделили обе части неравенства на 2...