1)Рассм. прямоугольный треуг-к АВD, образованный одной из диагоналей и 2 сторонами прямоугольника(а - первая сторона, b - вторая сторона). Тогда по теореме пифагора квадрат гипотенузы равен сумме квадратов катетов:
45^2 = a^2 + b^2
Площадь прямоугольника - это произведение сторон а и b:
a * b = 972
a^2 + b^2 можно представить как полный квадрат:
(a + b)^2 - 2ab = a^2 + b^2 (a^2 + b^2 + 2ab) - 2ab = a^2 + b^2
2)Теперь вместо ab подставляем 972, вместо a^2 + b^2 - 45^2 (или 2025)
(a + b)^2 - 1944 = 2025
(a + b)^2 = 3989
a + b = кв. корень 3969 = 63
3)Теперь решим систему нера-в:
a + b = 63
a * b = 972, выражаем а через 1-ое урав-е и подставляем во второе:
a = 63 - b
(63 - b) * b = 972
a = 63 - b
63b - b^2 - 972 = 0
a = 63 - b
(b - 27) * (b - 36) = 0 , (следовательно 27 и 36 - корни кв. урав-я),
а = 36 a = 27
b = 27, b = 36, следовательно
27 см и 36 см - длины сторон прямоугольника.
ответ: 27 и 36
4sinxcosx - 3sin²x =sin²x +cos²x ;
4sin²x - 4sinxcosx +cos²x =0 ;
(2sinx -cosx)² =0 ;
2sinx -cosx = 0 ;
cosx =2sinx || разделим обе части на sinx ≠0 ;
* * *противном случае(sinx =0)получилось бы и cosx =0, но sin²x+cos²x =1* * *
ctqx =2 ;
x =arcctq2 +πn ,n∈Z .
ответ: arcctq2 +πn ,n∈Z .
* * * * * * * как не надо решать (нерационально) * * * * * * *
4sinxcosx - 3sin²2x =1 ;
2sin2x -3(1 -cos2x)/2 =1 ;
4sin2x +3cos2x =4 ;
* ** 4sin2x +3cos2x =√(4²+3²)((4/5)*sin2x +(3/5)*cos2x )=
5(cosα*sin2x +sinα*cos2x)= 5sin(2x +α) ,где α =arctq(3/4) или α =arcsin(3/5)* * *
5sin(2x +α) =4 ;
sin(2x +α) =4/5 ;
2x+α =(-1)^(n) arcsin(4/5) +π*n , n∈Z ;
2x= -α+ (-1)^(n) arcsin(4/5) +π*n , n∈Z ;
x= -α/2+ (1/2)*(-1)^(n) arcsin(4/5) +π/2*n , n∈Z.
ответ: -1/2arcsin(3/5)+ (1/2)*(-1)^(n) arcsin(4/5) +π/2*n , n∈Z .