Вспомним предназначение и смысл формул сокращенного умножения. Ранее мы изучали и повторили достаточно трудоемкую операцию умножения многочленов, ее сложность заключается в том, что многочлен – это сумма одночленов, и для умножения нужно каждый член первого многочлена умножить на каждый член второго многочлена. В результате получаем достаточно большой многочлен, который нужно привести к стандартному виду. Формулы сокращенного умножения как раз упрощают операцию умножения многочленов.Приведем некоторые формулы: – квадрат суммы (разности); – разность квадратов; – разность кубов; – сумма кубов; называют неполным квадратом суммы; называют неполным квадратом разности;Отличие последних двух выражений от полного квадрата состоит в том, что в полном квадрате есть удвоенное произведение выражений, а в неполном – просто их произведение.
1) х4-5х2+4=0 тк это биквадратное уравнение то пусть х2= t, где t - неотрицательное число тогда: - 5t + 4=0 по т. виета t1= 4 t2 = -1, не подходит по условию остается только t=4 вернемся к исходной переменной х2=4 х=2 или х=-2 2)2 - -1=0 так же обозначаем за t, t- неотрицательноe 2 -t-1=0 d=1+4*2*1=9 t1=1 t2=-0.5, не подходит по условию вернемся к исходной переменной =1 х=1 или х=-1