
1 .
г) (2a -3b²)(4a² +6ab² +9b⁴ ) = (2a)³ - (3b²)³ =8a³ -27b⁶.
- - - - - -
2.
а) 9x² - 25 =(3x)² -(5)² =(3x -5)(3x +5) ;
б) -4a² +8a -4 = -4( a² -2a*1 +1²) = - 4(a-1)² || = -(2(a-1) )² ||
в) 8y³ -8x³ = 8(x³ - y³) =8(x - y) (x² + xy + y²) ;
г) 9(a+2)²- 4 =( 3(a+2) ²) - 2² =( 3(a+2) - 2 )( 3(a+2) +2)=(3a+4)(3a+8) ;
|| =9a² +36a +32 ||
или 9(a+2)²- 4 =9(a² +4a +4) -4 = 9a² +36a +32
д) (a - 1)³ + 8a⁶ = (a - 1)³ + (2a²)³ = (a -1 +2a²)*( (a-1)² - (a-1)*2a² + (2a²)²) =
( 2a² + a - 1)*( 4a⁴ - 2a³ + 3a² - 2a + 1 ) .
е) (а - b)²+ 2(a-b)(a+3) + (a+3)² = (a -b +a+3)² = (2a -b +3)² .
- - - - - - -
3. Решите уравнение (4x+1)² - (4x+3)(4x-3) = 6x -2
(4x)²+2*4x*1 +1² - ( (4x)²- 3² ) = 6x -2
(4x)² +8x + 1 - (4x)² + 9 = 6x -2
8x - 6x = -2 -1 - 9
2x = -12
x = - 6
- - - - - - -
4 . 4x² - 4xy + y² =(2x)² -2*(2x)y + y² = (2x+y)² ≥0

Объяснение:
![\sqrt{x+y}+\sqrt[3]{x-y}=6\\\sqrt[6]{(x+y)^3(x-y)^2}=8](/tpl/images/1358/0734/79d4c.png)
Выполним преобразование:
или ![\sqrt{x+y}+\sqrt[3]{x-y}=6\\\sqrt{x+y}\times\sqrt[3]{x-y}=-8](/tpl/images/1358/0734/9c2ec.png)
Пусть
.
Тогда для 1-ого случая:

Заметим здесь теорему Виета (если не заметили, то можно просто решить эту систему).
Тогда:

или

Замечу, что замену можно было не делать. Она дана для понимания. Можно было сразу написать то, что идет после слов обратная замена.
Обратная замена:
![1)\\\sqrt{x+y}=4\\\sqrt[3]{x-y}=2](/tpl/images/1358/0734/fbf65.png)
Первое уравнение можно возвести в квадрат, так как обе части его положительны:

Очевиден прием решения: сложение.

Получили пару чисел (12; 4).
![2)\\\sqrt{x+y}=2\\\sqrt[3]{x-y}=4\\\\x+y=4\\x-y=64\\\\2x=68\\x=34\\\\y=4-x\\y=-30](/tpl/images/1358/0734/7b359.png)
Получили пару (34; -30).
Для 2-ого случая:
![\sqrt{x+y}+\sqrt[3]{x-y}=6\\\sqrt{x+y}\times\sqrt[3]{x-y}=-8\\\\\sqrt{x+y}=3+\sqrt{17}\\\sqrt[3]{x-y}=3-\sqrt{17}\\\\x+y=(3+\sqrt{17})^2\\x-y=(3-\sqrt{17})^3\\\\x=103-19\sqrt{17}\\y=25\sqrt{17}-77](/tpl/images/1358/0734/218c4.png)
Еще одна пара чисел: 
Заметим, что
, т.к. это число меньше 0.
Система уравнений решена!
фак фак фак факф афыффк