может быть, площадь равна 24 см^2?
если так, то пусть катеты длины a и b
тогда имеем:
a^2+b^2=100 (теорема пифагора)
a*b=48 (площадь равна произведению катетов пополам)
получаем a=48/b
подставим в 1е уравнение, получим
48*48/b^2+b^2=100 преобразуем, получаем:
48*48+b^4-100*b^2=0
решаем как квадратное (48*48=2304)
дискриминант равен 10000-4*2304=784=28*28
получаем b^2=(100-28)/2=36 или b^2=(100+28)/2=64
отсюда b=6 или b=8 (очевидно, длина не может быть отрицательной)
отсюда из уравнения a=48/b получаем a=8 и a=6 соответственно
легко заметить, что эти 2 случая симметричны и дают один и тот же ответ
ответ: длины катетов 6 и 8
ответ:
Объяснение:
Исходная дробь равносильна следующей системе (числитель равен нулю, знаменатель не равен нулю + ОДЗ):
В первом уравнении произведение равно нулю, когда хотя бы один из множителей равен нулю. Второе неравенство равносильно тому, что подкоренное выражение не равно нулю. Значит, вместе второе и третье образуют неравенство 2x + y - 1 > 0 ⇔ y > -2x + 1. Вернёмся к первому уравнению:
В первом уравнении сделаем замену |x| + |y| = t.
По теореме Виета![\displaystyle\left \{ {{t_1+t_2=8,} \atop {t_1t_2=15}} \right. \Rightarrow t_1=3,t_2=5](/tpl/images/1360/3525/18675.png)
Получаем![\left[\begin{gathered}|x|+|y|=3,\\|x|+|y|=5,\\ x^2+y^2=16\end{gathered}\right.](/tpl/images/1360/3525/b4ffa.png)
Третье уравнение — уравнение окружности с центром (0; 0) и радиусом 4. Первые два уравнения — уравнения квадратов с центром в точке (0; 0), наклонённых на 45° и диагоналями 6 и 10: действительно, если раскрыть модуль y, а всё без y перенести в правую сторону, то при y ≥ 0 y = -|x| + 3, при y < 0 y = |x| - 3. Аналогично с |x| + |y| = 5.
Учтём ограничение y > -2x + 1: нам подохдят все y, что выше прямой -2x + 1. Всё вместе это выглядит, как на первой картинке. Теперь нужно обрезать всё, что не попадает в синюю область (см. вторую картинку).
Для выполнения второго задания вычислим точки пересечения квадратов и окружности с прямой y = -2x + 1, а также точки пересечения окружности и большого квадрата.
При x < 0:![-x+1-2x=3\\-3x=2\\x=-\dfrac{2}{3}, y=-2\cdot\left(-\dfrac{2}{3}\right)+1=\dfrac{7}{3}](/tpl/images/1360/3525/56a68.png)
При 0 ≤ x < 0,5:
— не подходит
При x ≥ 0,5:![x+2x-1=3\\3x=4\\x=\dfrac{4}{3},y=-2\cdot \dfrac{4}{3}+1=-\dfrac{5}{3}](/tpl/images/1360/3525/fc0a1.png)
При x < 0:![-x+1-2x=5\\-3x=4\\x=-\dfrac{4}{3}, y=-2\cdot\left(-\dfrac{4}{3}\right)+1=\dfrac{11}{3}](/tpl/images/1360/3525/2fe03.png)
При 0 ≤ x < 0,5:
— не подходит
При x ≥ 0,5:![x+2x-1=5\\3x=6\\x=2,y=-2\cdot 2+1=-3](/tpl/images/1360/3525/f253c.png)
Решим первое уравнение:
Прямая y = px - 1 — прямая, проходящая через точку (0; -1). Действительно, если подставить x = 0, вне зависимости от параметра p при данном x y = -1. p регулирует наклон прямой. Будем вращать прямую около точки (0; -1) и отмечать промежутки (красным), где прямая "начинает" и "заканчивает" иметь две общие точки (см. третью картинку).
На рисунке отмечены все промежутки и частные случаи, когда прямая имеет две общие точки. Выразим p через x и y:
Для![\left(-\dfrac{2}{3};\dfrac{7}{3}\right)\ p=\dfrac{\frac{7}{3}+1}{-\frac{2}{3}}=-5](/tpl/images/1360/3525/ca9ce.png)
Для![\left(-\dfrac{5-\sqrt{7}}{2};\dfrac{5+\sqrt{7}}{2}\right)\ p=\dfrac{\frac{5+\sqrt{7}}{2}+1}{-\frac{5-\sqrt{7}}{2}}=-\dfrac{7+2\sqrt{7}}{3}](/tpl/images/1360/3525/063dd.png)
Для![\left(-\dfrac{4}{3};\dfrac{11}{3}\right)\ p=\dfrac{\frac{11}{3}+1}{-\frac{4}{3}}=-\dfrac{7}{2}](/tpl/images/1360/3525/63a66.png)
Для![\left(2;-3\right)\ p=\dfrac{-3+1}{2}=-1](/tpl/images/1360/3525/c5ec7.png)
Для![\left(\dfrac{4}{3};-\dfrac{5}{3}\right)\ p=\dfrac{-\frac{5}{3}+1}{\frac{4}{3}}=-\dfrac{1}{2}](/tpl/images/1360/3525/ecfea.png)
Для![\left(\dfrac{5+\sqrt{7}}{2};-\dfrac{5-\sqrt{7}}{2}\right)\ p=\dfrac{-\frac{5-\sqrt{7}}{2}+1}{\frac{5+\sqrt{7}}{2}}=\dfrac{-11+4\sqrt{7}}{9}](/tpl/images/1360/3525/00f7a.png)
Для![\left(\dfrac{5+\sqrt{7}}{2};\dfrac{5-\sqrt{7}}{2}\right)\ p=\dfrac{\frac{5-\sqrt{7}}{2}+1}{\frac{5+\sqrt{7}}{2}}=\dfrac{7-2\sqrt{7}}{3}](/tpl/images/1360/3525/9cf8c.png)
Для![\left(\dfrac{5-\sqrt{7}}{2};\dfrac{5+\sqrt{7}}{2}\right)\ p=\dfrac{\frac{5+\sqrt{7}}{2}+1}{\frac{5-\sqrt{7}}{2}}=\dfrac{7+2\sqrt{7}}{3}](/tpl/images/1360/3525/48f5e.png)
Итого