5) 500/3*Π
Объяснение:
Объем шара выражается формулой:
V = 4/3*Π*R^3
Образующая конуса L, радиус конуса r и высота H образуют прямоугольный треугольник.
Гипотенуза L= 5, один катет H=2,5, второй катет по теореме Пифагора
r = 5*√3/2 = 2,5*√3
Это радиус основания конуса.
Углы в этом треугольнике 90°, 30° и 60°, причем 60° находится напротив радиуса конуса.
Теперь рассмотрим сферу.
В ней проходит два радиуса, один из центра сферы до вершины конуса, второй из центра сферы до любой точки на окружности конуса.
Радиусы одинаковые, и получается равнобедренный треугольник из R, R и L
При этом угол между R и L равен 60°. Значит, треугольник равносторонний.
Это значит, что R = L = 5 см.
Объем шара
V = 4/3*Π*R^3 = 4/3*Π*5^3 = 4/3*Π*125 = 500/3*Π
Объяснение:
Вертикальная ассимптота функции х=0.
Чтобы найти экстремумы найдём первую производную и приравняем её нулю.
у'=1-1/х²=0 => 1=1/х² => х²=1
х1=1; х2 =-1
Рассмотрим интервалы (-бесконечность ;-1); (-1; 0); (0; 1); (1; +бесконечность)
При х=-2 у'(-2)=1-1/4=3/4>0, значит функция в этом интервале возрастает.
у'(-1/2)=1-4=-3<0 - функция убывает.
у'(1/2)=1-4=-3<0 - функция убывает.
у'(2)=1-1/4=3/4>0 - функция возрастает.
Таким образом, точка (-1; -2) - локальный максимум функции, а точка (1; 2) - локальный минимум.