М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
AgsHiNN05I
AgsHiNN05I
15.01.2020 23:48 •  Алгебра

№1 выражение: а)2с(1+-2)(с+4) б)(у+2)в квадр.-2у(у+2 в)30х+3(х-5)в квадр. №2 разложите на множители: а)4а-а в кубе б)ах в квадр.+2ах+а №3 выражение: (b в квадр.+2b)в квадр.-b в квадр(b-1)(b+1)+2b(3-2b)в квадр..

👇
Ответ:
kazachok2
kazachok2
15.01.2020

а)2с(1+с)-(с-2)(с+4)=2c+2c²-(c²+4c-2c-8)=2c+2c²-c²-4c+2c+8=c²+8

б) (у+2)²-2у(у+2)=y²+4y+4-2y²-4y=-y²+4

В)30х+3(х-5)²=30x+3(x²-10x+25)=30x+3x²-30x+75=3x²+75

 

№2

а)4а-а³=a(4-a²)a(2-a)(2+a)

б)ах²+2ах+а=a(x²+2x+1)=a(x+1)²

 

№3

(b²+2b)²-b²(b-1)(b+1)+2b(3-2b)²=b⁴+4b³+4b²-b²(b²-1)+2b(9-12b+4b²)=b⁴+4b³+4b²-b⁴+b²+18b-24b²+8b³=12b³-19b²+18b

   
4,6(6 оценок)
Открыть все ответы
Ответ:
катерина424
катерина424
15.01.2020
Решение

Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/  
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
 Решим систему:
/х + /у = / ,
 (/) х + (/ ) у = .

  + = ,
+ = ;

 у = − , ;
+ * ( − , ) = *( − , )

 у = − , ;
, ² − + = ;

у = − , ;
² − + = ;

² − + = ;
=  , у =
 или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней

4,8(87 оценок)
Ответ:
lis316721
lis316721
15.01.2020
Что такое подобные одночлены?

Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов:
3a2 и –4a2;      31 и 45;      a2bx4 и 1,4a2bx4;      100y3и 100y3

Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.

Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры:
4x2 + 15x2 = 19x2
5ab – 1,7ab = 3,3ab
13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0

Эти действия называются приведением подобных одночленов.

Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов:
2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x
2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x

То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу:
2 * 3 = 3 + 3 = 2 + 2 + 2

4,8(1 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ