Вообще то корни есть но не очень красивые. Чтобы решить по теореме виетта это надо для начала это выражение преобразовать: первый коэффициент надо умножить на третий найти корни и чтобы получить корни того выражения разделить надо на первый коэффициент каждый корень.: Х^2-7х-33=0 Х1+х2=7 х1*х2=-33 Х1=10,227 х2=-3,227
Тогда корни уравнения 3х^2-7х-11=0 будут равны:!! Х1=10,227/3=3,409 Х2=-3,227/3=-1,07566666666666667
Х+у=10 х³ + у³ = (х+у)(х²+ху+у²) = 10(х²+ху+у²) чтобы сумма кубов была наименьшей, нужно найти минимум для выражения в скобках (т.к. 10 уже не изменится))) х²+ху+у² = х²+2ху+у² - ху = (х+у)² - ху = 100 - ху = 100 - (10-у)у = = 100 - 10у + у² это квадратный трехчлен (график -- парабола, ветви вверх))), своего минимума достигает в вершине параболы... абсцисса вершины: у₀ = -b / (2a) = 10/2 = 5 тогда х = 10-у = 5 другой вариант рассуждений: х = 10-у х³ + у³ = (10-у)³ + у³ = 10³ - 300у + 30у² - у³ + у³ = 30у² - 300у + 1000 вновь парабола, ветви вверх, минимум в вершине для у₀ = -b / (2a) = 300/(2*30) = 10/2 = 5 тогда х = 5 тоже))
F(x) = 1,3x - 3,9 1) выясним сначала при каких значениях аргумента f(x)=0, т.е. 1,3x - 3,9 = 0 1,3x = 3,9 | : 1,3 x = 32) при каких значениях аргумента f(x) < 0 ? 1,3x - 3,9 < 0 x < 3 3) при каких значениях аргумента f(x) > 0 ? 1,3x - 3,9 > 0 x > 3 т.к. угловой коэффициент (это коэффициент при х) данной линейной функции положителен , значит функция возрастающая. ответ: f(x)=0 при x = 3; f(x) < 0 при x < 3; f(x) > 0 при x > 3; функция возрастающая.
Решай через дескременант.
3x^2-7x-11=0
D=49+132=181-корней нет
Значит по теореме виета то же не решится