Рассмотрим произвольный прямоугольный треугольник АВС и проведем высоту СН = h из вершины С его прямого угла. Она разобьет данный треугольник на два прямоугольных треугольника АСН и ВСН; каждый из этих треугольников имеет с треугольником АВС общий острый угол и потому подобен треугольнику АВС. Все три треугольника АВС, АСН и ВСН подобны между собой. Из подобия треугольников АВС и АСН имеем СН2 = АН×ВН, т.е.
Теорема. Высота прямоугольного треугольника, опущенная из вершины прямого угла на гипотенузу, равна среднему геометрическому отрезков, на которые она разбивает гипотенузу.
h^2=m*n
a^2=c*m
b^2=c*n
c- гипотенуза
m и n - ее части
y=-1,5x² на отрезке [-4;-2]
y = -1,5 x² - квадратичная функция, график - парабола, ветви направлены вниз (a=-1,5 < 0). Максимальное значение принимает в точке вершины параболы.
x₀ = 0; y₀ = 0 - координаты вершины параболы из уравнения функции.
x₀ ∉ [-4; -2] ⇒ наибольшее и наименьшее значения функции на границах отрезка.
x₁ = -4; y₁ = -1,5 x² = -1,5 · (-4)² = -1,5 · 16 = -24
x₂ = -2; y₂ = -1,5 x² = -1,5 · (-2)² = -1,5 · 4 = -6
ответ : наибольшее значение y = -6;
наименьшее значение y = -24