М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
VlfdimirSychev
VlfdimirSychev
27.03.2023 11:10 •  Алгебра

Знфйдіть область визначення функції: f(x)\sqrt{3x-1} +\frac{1}{x^{2}-x-12 }

👇
Ответ:
ГораСлез
ГораСлез
27.03.2023

на фото...............


Знфйдіть область визначення функції: <img src=" />
4,5(53 оценок)
Открыть все ответы
Ответ:
nasamar
nasamar
27.03.2023

1) (18a-3a²)/(8a²-48a)=3a(6-a)/8a(a-6)=3a(-1)(a-6)/8a(a-6)=-3/8

2) (8p-40)/(15-3p)=8(p-5)/3(5-p)=8(-1)(5-p)/3(5-p)=-8/3

3) (4-x²)/(10-5x)=(2-x)(2+x)/5(2-x)=(2+x)/5=2/5+x/5=0.4+0.2x

4) (3x+6y)²/(5x+10y)=9(x+2y)²/5(x+2y)=9(x+2y)/5=1.8(x+2y)=1.8x+3.6y

5) (ax+bx-ay-by)/(bx-by)=(x(a+b)-y(a+b))/b(x-y)=(a+b)(x-y)/b(x-y)=(a+b)/b=a/b+1

6) (a²-6a+9)/(27-a³)=(a-3)²/(3-a)(9+3a+a²)=(a-3)²/(-1)(a-3)(9+3a+a²)=                     =(3-a)/(9+3a+a²)

7) (2a-2b)²/(a-b)=4(a-b)²/(a-b)=4(a-b)=4a-4b

8) (4c+12d)²/(c+3d)=16(c+3d)²/(c+3d)=16(c+3d)=16c+48d

9) (4x²-y²)/(6x-3y)²=(2x-3y)(2x+3y)/9(2x-y)²=(2x+y)/9(2x-y)

10) (ab-3b-2a+6)/(15-5a)=(b(a-3)-2(a-3))/5(3-a)=(a-3)(b-2)/5(3-a)=                 =(a-3)(b-2)/5(-1)(a-3)=(2-b)/5

Объяснение:

4,4(47 оценок)
Ответ:
Kaldomova2014
Kaldomova2014
27.03.2023

Объяснение:

1) Треугольники ABM и CBM

AB=BC (по условию)

BM - общая

∠M=90° (по условию)

Вывод: треугольники равны по катету и гипотенузе

2) Треугольники FDN и NKF

DN=FK (по условию)

FN - общая

∠D=∠K=90° (по условию)

Вывод: треугольники равны по катету и гипотенузе

3) Треугольники SDO и SPO

∠D=∠P=90° (по условию)

SO - общая

∠SOD=∠SOP (по условию)

Вывод: треугольники равны по гипотенузе и острому углу

4) Треугольники RMX и XNR

RX - общая

∠MXR=∠NRX (по условию)

∠M=∠N=90° (по условию)

Вывод: треугольники равны по гипотенузе и острому углу

Треугольники MRT и NXT:

RT=XT (тк ∠MXR=∠NRX (по условию), треугольник RTX - равнобедренный (по свойству))

∠M=∠N=90° (по условию)

Из доказательства пары этого пункта ∠MRX=∠NXR (соотв. элементы равных фигур равны), но ∠MXR=∠NRX (по условию)=> ∠MRT=∠NXT

Вывод: треугольники равны по гипотенузе и острому углу

4,5(59 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ