Пронумеруем книги от 1 до 666.
Рассмотрим последовательности книг 1 + 14i, 2 + 14i, 3 + 14i, ... 14 + 14i, всего 14 последовательностей.
Если длина последовательности k = 2m, то книг по белой магии в ней может быть не более m, а если k = 2m + 1, то не более m + 1 (все книги по белой магии будут стоять на нечетных местах)
Определим сколько у нас будет последовательностей и какой длины.
Т.к. 666 = 14 * 47 + 8, то у нас 6 последовательностей длины 47 и 8 последовательностей длины 48. Всего книг по белой магии может быть:
K = 8 * 24 + 6 * 24 = 14 * 24 = 336
Для нахождения площади фигуры, ограниченной линиями функций у = х^2, у = 0 и х = 2 построим сначала графики этих функций. График функции у = 0 - прямая, которая задаёт ось ОХ; график функции х = 2 - прямая, параллельная оси ОУ и пересекающая ось ОХ в точке х =2. График функции у = х^2 - парабола, построена поточечно путём подбора значений координаты х и вычислением значения функции у в каждой такой точке. То есть:
1) х = -4, у = (-4)^2 = 16, на графике откладываем точки х = -4 и у = 16;
2) х = -3, у = (-3)^2 = 9, на графике откладываем точки х = -3 и у = 9;
3)х = -2, у = (-2)^2 = 4, на графике откладываем точки х = -2 и у = 4;
4)х = -1, у = (-1)^2 = 1, на графике откладываем точки х = -1 и у = 1;
5)х = 0, у = 0, на графике откладываем точки х = 0 и у = 0;
6)х = 4, у = 4^2 = 16, на графике откладываем точки х = 4 и у = 16;
7) х = 3, у = 3^2 = 9, на графике откладываем точки х = 3 и у = 9;
8)х = 2, у = 2^2 = 4, на графике откладываем точки х = 2 и у = 4;
9)х = 1, у = 1^2 = 1, на графике откладываем точки х = 1 и у = 0.
Заштрихованная на графике область является фигурой, площадь которой необходимо вычислить (площадь криволинейной трапеции). Вычисляется она по формуле определенного интеграла S = ∫f(x) dx - g(x) dx (верхний предел b, нижний предел a). Найдём верхний и нижний пределы интеграла. Для этого воспользуемся построенным графиком. Определим, на каком промежутке функция у = х^2 находится выше оси ОХ (так как значение площади не может быть числом отрицательным). Это отрезок [0;2], значит верхним пределом интеграла будет два (b = 2), нижним ноль (а = 0).
Вычислим определенный интеграл функции у = х^2 с пределами 2 и 0, значение которого и будет равно значению площади:
S = ∫(х^2)dx (верхний предел 2, нижний 0).
Интегрируем с формулы интегрирования:
∫х^ n dx = x^(n+1) / n+1,
и получаем выражение х^3/3.
Далее воспользуемся формулой Ньютона - Лейбница и получим значение площади, равное 8/3 или ~ 2,67 кв.ед.
ответ: площадь фигуры, ограниченной линиями у = х^2, х = 2, у= 0 равна 8/3 или ~ 2,67 кв.единиц.
Подробнее - на -
всех решенных задач 60+70+80+90=300. Значит, в среднем один школьник решил 300:100=3 задачи. Т.к. 4 задачи не решил никто, значит, максимум, каждый школьник решил 3 задачи: или 1,2,3 или 1,2,4 или 1,3,4 или 2,3,4. Награду получили только те, кто решил 3 и 4 задачи, т.е. 1,3,4 и 2,3,4. если получивших награду обозначить х, то (60-х) - кол-во учеников, решивших 1,2,3 задачи, а (70-х)-решивших 1,2,4 задачи. Получаем равенство
(60-Х) + (70-Х) + Х = 100
Х = 30
Было награждено 30 человек