Объяснение:
1) x^2-5x-12=6;
x^2-5x-18=0;
a=1; b=-5; c=-18;
D=b^2-4ac=(-5)^2-4*1*(-18)=25+72=97>0 - 2 корня
x1,2 = (-b±√D)/2a=((-(-5)±√97)/2*1=(5±√97)2;
x1=(5+√97)2≈7.42;
x2=(5-√97)2≈-2.42.
2) -x^2+3x-12=-4x;
-x^2+7x-12=0; [*(-1)]
x^2-7x+12=0;
a=1; b=-7; c=12;
D=b^2-4ac=(-7)^2-4*1*12=49-48=1>0 - 2 корня.
x1,2=(-b±√D)/2a=(-(-7)±√1)/2a=(7±1)/2;
x1=(7+1)/2=8/2=4;
x2=(7-1)/2=6/2=3.
3) 9x-x^2=6+2x;
-x^2+7x-6=0; [*(-1)]
x^2-7x+6=0;
a=1; b=-7; c=6;
D=b^2-4ac = (-7)^2-4*1*6=49-24=25>0 - 2 корня.
x1,2=(-b±√D)/2a=(-(-7)±√25)/2*1=(7±5)/2;
x1=(7+5)/2=12/2=6;
x2=(7-5)/2=2/2=1.
Коэффициент подобия по определению считается по линейным размерам .
Для периметра (сумме линейных размеров) он равен k, для площадей k^2,
для объемов k^3.Тогда периметр равен 12*4=48 см, площадь равна 9*4^2=144 кв. см
Как-то так
Объяснение:
<!--c-->
Отношение периметров двух подобных треугольников равно коэффициенту подобия.
P(ABC)P(RTG)=k20P(RTG)=19P(RTG)=9⋅20=180(см)
Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
S(ABC)S(RTG)=k26S(RTG)=(19)26S(RTG)=181S(RTG)=6⋅81=486(см2)