1. Всего карточек 50 из них 9; 18; 27; 36; 45 кратны 9 - их всего 5 карточек.
Всего все возможных событий: n=50
Всего благоприятных событий: m = 5
Искомая вероятность: P = m/n = 5/50 = 1/10 = 0,1.
2. Всего все возможных подбрасывания игральных кубиков: 6*6=36
На желтой кости выпало четное число: {2;4;6}
На красной кости - {5}
Всего благоприятных событий: 3*1 = 3.
Искомая вероятность: P = 3/36 = 1/12
3. Вероятность того, что вынутая наугад карта окажется шестеркой красной масти равна . Тогда вероятность того, что вынутая наугад карта окажется не шестеркой красной масти равна
4. Выпишем все выпадения очков, в сумме не меньше 11.
{6;6}, {5;6}, {6;5} - всего 3
Искомая вероятность: P = 3/36 = 1/12
5. Всего все возможных событий:
Один красный шар можно достать а один белый По правилу произведения, достать один красный и один белый шары можно
Искомая вероятность: P = 12/21 = 4/7
Найти вероятность того что пр одновременном броске двух кубиков сумма очков которые выпали равна 9?
Из трех билетов два выигрышные. Найти вероятность того что среди взятых наугад 5 билетов хотя бы один выиграшный?
Найти вероятность того что при одновременном броске двух кубиков сумма очков которые выпали равна 9?
Шесть человек случайным образом сели на лавочке. Найти вероятност ь того что два фиксированных человека будут
сидеть рядом?
Так как из трех билетов выигрышных два, то вероятность выиграть , тогда вероятность проиграть .
Зная р и q, можно найти вероятность наступления хотя бы одного события в n испытаниях по формуле: .
Подставляя известные данные, получим: .
ответ: 242/243
2) Найти вероятность того, что при одновременном броске двух кубиков сумма выпавших очков равна 9?
Всего исходов 36, благоприятных исходов 4 (выпали кубики 3/6, 4/5, 5/4, 6/3).
Тогда искомая вероятность равна отношению числа благоприятных исходов к общему числу возможных исходов: .
ответ: 1/9
3) Шесть человек случайным образом сели на лавочке. Найти вероятность того, что два фиксированных человека будут сидеть рядом?
Всего вариантов - число перестановок из 6 элементов: . Для того чтобы найти число благоприятных исходов, (то есть того, что два фиксированных человека будут сидеть рядом), мы "склеиваем" этих двоих и считаем число перестановок из 5 элементов: , но так как они могут сесть двояко (один слева, другой справа и один справа, другой слева) мы домножаем получившееся число на 2: .
Искомая вероятность равна .
ответ: 1/3
?/\\:
Объяснение:
:
Obeme