пусть x - собственная скорость лодки, тогда по течению скорость =x+1.5, против течения скорость = x-1.5.
Расстояние за 6 часов по течению = (x+1.5)*6
Расстояние за 3 часа против течения = (x-1.5)*3
Расстояние, пройденное по течению за 6 часов в 3 раза больше расстояния, пройденного против течения за 3 часа. Составим уравнение:
(x+1.5)*6=(x-1.5)*3*3
2x+3=3x-4.5
x=7.5 км/ч - скорость лодки
ответ:Допустим, у нас есть бесконечно малые при одном и том же {\displaystyle x\to a} x\to a величины {\displaystyle \alpha (x)} \alpha(x) и {\displaystyle \beta (x)} \beta(x) (либо, что не важно для определения, бесконечно малые последовательности).
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=0} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=0, то {\displaystyle \beta } \beta — бесконечно малая высшего порядка малости, чем {\displaystyle \alpha } \alpha . Обозначают {\displaystyle \beta =o(\alpha )} \beta =o(\alpha ) или {\displaystyle \beta \prec \alpha } \beta\prec\alpha.
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=\infty } \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=\infty , то {\displaystyle \beta } \beta — бесконечно малая низшего порядка малости, чем {\displaystyle \alpha } \alpha . Соответственно {\displaystyle \alpha =o(\beta )} \alpha =o(\beta ) или {\displaystyle \alpha \prec \beta } \alpha\prec\beta.
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=c (предел конечен и не равен 0), то {\displaystyle \alpha } \alpha и {\displaystyle \beta } \beta являются бесконечно малыми величинами одного порядка малости. Это обозначается как {\displaystyle \alpha \asymp \beta } \alpha\asymp\beta или как одновременное выполнение отношений {\displaystyle \beta =O(\alpha )} \beta =O(\alpha ) и {\displaystyle \alpha =O(\beta )} \alpha =O(\beta ). Следует заметить, что в некоторых источниках можно встретить обозначение, когда одинаковость порядков записывают в виде только одного отношения «о большое», что является вольным использованием данного символа.
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha ^{m}}}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha ^{m}}}=c (предел конечен и не равен 0), то бесконечно малая величина {\displaystyle \beta } \beta имеет {\displaystyle m} m-й порядок малости относительно бесконечно малой {\displaystyle \alpha } \alpha .
Для вычисления подобных пределов удобно использовать правило Лопиталя.
Кк – это аббревиатура, имеющая два значения, либо «ok, ok», либо миллион
или ты имеешь ввиду
Объяснение:
Кики — уменьшительная форма имени Кристина:
Кики с Монпарнаса (1901—1953) — французская певица, актриса, художница, натурщица.
Ки́ки — девочка, юная ведьма, занимающаяся курьерской доставкой в полете на метле, главная героиня серии детских книг Эйко Кадоно, мультфильма Хаяо Миядзаки «Ведьмина служба доставки» и одноименного художественного фильма.
Ки́ки — пушистый игрушечный заяц, принадлежащий девочке Джесси из мультсериала «Студенты».
Кики́ — гигантская черепаха-долгожитель.
Кики, Габи (род. 1995) — камерунский футболист.
Пусть X - собственная скорость лодки.
(X+1.5)*6 - путь, пройденный по течению
(X-1.5)*3 - путь, пройденный против течения
(X+1.5)*6 = (X-1.5)*3 * 3
Решаем уравнение :
6X + 9 = 9X - 13.5
3Х = 22.5
Х = 22.5/3 = 7.5 км/ч
ответ : собственная скорость лодки - 7.5 км/ч