А) Вероятность поражения цели одним выстрелом 0,8
Вероятность, что цель не будет поражена первым выстрелом = 1 - 0,8 = 0,2
Вероятность, что цель не будет поражена вторым выстрелом 1-0,8 = 0,2
Вероятность, что цель не будет поражена двумя выстрелами подряд: 0,2 * 0,2 = 0,04.
Таким образом, вероятность поражения цели двумя выстрелами 1-0,04 = 0,96
Б) Аналогично рассуждая, вероятность, что цель не будет поражена третьим выстрелом 1-0,8 = 0,2
Вероятность, что цель не будет поражена тремя выстрелами подряд: 0,2 * 0,2 * 0,2 = 0,008.
Таким образом, вероятность поражения цели тремя выстрелами 1-0,008 = 0,992
Таким образом, вероятность поражения цели тремя выстрелами возрастает по сравнению с вероятностью поражения цели двумя выстрелами на 0,992-0,96=0,032, т.е. примерно на 3% .
В) Вероятно, на практике систему ограничивают двумя разрешениями на выстрел, поскольку третий выстрел недостаточно существенно повышает вероятность поражения цели.
Решите графическим систему уравнений :
1) {xy =2 , 2) { 2x² +2y = 10 ,
{x² -2y = -3 ; { - x +3y = 1 ;
ответ: 1) (1 ; 1/2)
2) (-7/3 ; -4/9) , (2 ;1)
Объяснение:
1) {xy =2 , {y =2/x || гипербола x =0 вертикальная асимптота
{x² -2y = -3 [ y =(1/2)x² + 3/2
2) ⇔ { y = - x²+5 , пока аналитическое решение
{ y =(1/3)x + 1/3
- x²+5 =(1/3)x +1/3 ⇔ 3x² -x -14 =0 D =(-1)² -4*(3)*(-14)= 169 =13²
⇒ x₁,₂ = (-1 ±13)/6
x₁ = (-1 -13)/(2*3) = -7/3 , y₁ =- x₁²+5 =(-7/3)²= -4/9 ;
x₂ = (-1 +13)/6 =2 , y₁ =(-7/3)x²₁+1/3 =(1/3)*(-7/3) +1/3=-4/3
ответ : ( -7/3 ; -4/9) и (2 ;1)
2x-1>0
2x>1
x>1/2
15-3x>0
-3x>-15
x<5