Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
Я уже решал подобную задачу, и мне скучно решать еще раз тем же Поэтому я воспользуюсь интересным геометрическим фактом, который, как мне кажется, используется не во всех школах. А именно, оказывается
Координаты точки пересечения медиан в треугольнике равны средним арифметическим соответствующих координат вершин
То есть абсцисса точки пересечения медиан равна сумме абсцисс вершин, деленной на три, то же самое для ординат (а для пространственного треугольника и для аппликат).
В нашем случае точка G пересечения медиан имеет координаты G(4/3;7/3).
Уравнение прямой, проходящей через B и G, и будет уравнением нужной медианы.
y=kx+b; 5=2k+b; 7/3=4k/3+b (это я подставил координаты точек, лежащих на прямой). Беря разность этих уравнений, находим k:
5-7/3=2k-4k/3; 8/3=2k/3; k=4; подставляем в первое условие: 5=2·4+b; b= - 3.
3√3/2 см.
Объяснение:
Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
4. S = 1/2ab,
S = 1/2• c • h, тогда
1/2•a•b = 1/2• c • h,
ab = ch,
h = (ab)/c = (3•3√3)/6 = 3√3/2 (см).